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SUMMARY AND CONCLUSIONS 

As prelude to an assessment of uncertainties in flood frequency analysis, the definitions of 

risk and uncertainty given in the Economic and Environmental Principles and 

Guidelines for Water and Land Related Resource Implementation Studies (U.S. Water 

Resources Council: 1983) are briefly reviewed. It is noted that while the Principles and 

Guidelines are clear in linking risk to probability, the Principles and Guidelines do not 

make it clear whether or not uncertainty is linked to probability. To render the definition 

of uncertainty a little clearer, Davidson’s (1991) notion of “true uncertainty” is 

introduced, where true uncertainty cannot be substituted for by probability, leaving the 

notion of uncertainty to be used in a probability context, just as risk is used. In doing so, 

the uncertainties in flood frequency analysis, at least the uncertainties conditioned on the 

presumption of a probability distribution, objective or otherwise, can be dealt with in 

probabilistic terms. Thus the T − year  flood may be said to be unknown but knowable. 

It would be a contradiction in terms to say that the T − year  flood is unknowable. 

Probability is in reference to imperfect knowledge, not incomplete knowledge. 

 

Traditionally flood frequency analysis has be based on the assumption that an observed 

sequence of floods is a realization of a sequence of independent and identically 

distributed (iid) random variables. Under this assumption, uncertainty in flood frequency 

estimates as mainly focused on 1) the length of the sequence, 2) the choice of the 

distribution function, 3) the method used to estimate the parameters of the chosen 

distribution function and 4) the definition of the plotting position. Because the length of 

a sequence can only increase with the passage of time, methods of regionalization are 

often used to transfer information to the site of interest from sites having longer 

sequences to effectively increase the length of the sequence of interest. 

 

The issue of climate change has prompted hydrologist to question the iid assumption 

relative to hydrologic processes in general and to flood processes in particular. For the 

most part, attention has been given to detection of trends in hydrologic processes. 

Because hydrologic time series are short on a geologic scale, one can never be certain  
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that a trend is not part of a slow oscillation unless the series ends. A trend contradicts the 

iid assumption, more specifically the assumption that the sequence of random variables 

are identically distributed. Moreover, one can never be certain that a slow oscillation is 

not a reflection of persistence which contradicts the iid assumption, more specifically the 

assumption that the sequence of random variables are independently distributed.  

 

For this study, annual sequences of 1-Day high flows and annual sequences of peak flows 

at sites in the Upper Mississippi basin and in the Lower Missouri basin are considered. It 

was assumed that a flood sequence may be characterized by trend or persistence, where 

trend is linear and persistence is Markovian. Trend was a strong feature of the sequences 

while persistence was a less prominent feature. However, de-Markoving the sequences 

reduced the level of significance of trends in most of the sequences, and thereby, reduced 

the number of sequences having significant trends at the 1% or 5% levels. De-Markoving 

fully accounted for persistence, i.e. no sequence showed significant residual persistence at 

the 5% or higher level. De-trending the sequences  reduced the level of significance of 

persistence in most of the sequences, and thereby, reduced the number of sequences 

having significant trends at the 1% or 5% levels. De-trending fully accounted for trend, 

i.e. no sequence showed significant residual trend at the %5 or higher level. These results 

suggests that their is an interaction between trend and persistence in that one partially 

accounts for the other. 

 

The matter of trend and persistence is further assessed in relation to the frequency of 

flooding relative to a threshold elevation. For an arbitrary threshold elevation, flood 

water at time t , will either exceed the threshold elevation with probability pt  or not with 

probability qt = 1− pt . Under the iid assumption, pt = p , whereby qt = q = 1− p  ∀t  – the 

flood process is said to be Bernoullian. Two non-Bernollian processes are considered, one 

marked by trend where the iid assumption is relaxed such that pt , varies with t , and the 

other marked by persistence where the iid assumption is relaxed, such that the process of 

flooding is Markovian. In the case where the expected value of pt  is constant for the 

Bernoullian and the two Bernoullian processes, the non-Bernoullian process marked by 

trend yields a smaller standard deviation of the number  
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of floods in a sequence of length n  than the Bernoullian process. The non-Bernoullian 

process marked by persistence yields a larger standard deviation of the number of floods 

in a sequence of length n  than the Bernoullian process if the first order autocorrelation 

coefficient is positive, and a smaller standard deviation if the first order autocorrelation 

coefficient is negative. 

 

If the expected value of the probability defines the level of risk for a given level of 

negativity, then the expected risk is the same for the Bernollian and the two non-

Bernoullian processes. However, the levels of uncertainty in the risk varies depending 

upon whether the iid assumption holds or not. In a more general setting of flood 

frequency analysis, it does not follow that the greater uncertainty, measured by the 

standard deviation, derives from trend or from persistence.  

 

Under the iid assumption, a large share of the uncertainty in flood frequency analysis 

relating to the estimates of flood quantiles derives from the estimates of the parameters of 

the assumed distribution of floods. Of this share of uncertainty, most is attributed the 

skewness of the distribution. Because the estimate of skewness derived from a sequence of 

observed floods is subject to considerable sampling error, Bulletin 17-B places attention 

on improving at-site estimates of skewness . Bulletin 17-B also recognizes that the smaller 

floods effect the overall fit of the Log Pearson Type III distribution to an ordered 

sequence of observed floods. To reduce the uncertainty in the estimates of quantiles 

introduced through estimates of skewness, Bulletin 17-B gives attention to developing 

regionalized estimates of skewness and guidelines for censoring the smaller floods in a 

sequence. 

 

Empirical evidence shows that for sequences of the logs of floods, in the Upper 

Mississippi and Lower Missouri basins at least, the right tails of observed distributions, 

on an at-site or on a regionalized basis, may be approximated by the right tails of Normal 

distributions. A Right-Tail Normal distribution is introduced, i.e. a Normal distribution 

that is fitted to the logs floods of magnitude greater than a specified threshold value. To 

assess the merit of a Right-Tail Normal distribution relative to a Pearson Type III 

distribution, the threshold is taken to be the median of the logs of the flows.  
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Three methods are considered for estimating the parameters of the Right-Tail Normal 

distribution, and are referred to as the inflection point method, the η  – point method 

and the mirrored spread method, where 1≤ η ≤ n 2  and n .denotes the sequence length. 

The three methods are neither inclusive or exclusive. The Right-Tail Normal distribution 

is seen to yield better estimates of the T = 50 − Year  flood than the Pearson Type III 

distribution in most of the 70 year sequences of annual 1-day high flows on an at-site 

basis and for the corresponding regionalized sequences. The at-site sequences in log space 

derived from the regionalized sequences in log space are said to be in quasi-log space. It is 

seen that all sequences in quasi log space are better fitted by Right-Tail Normal 

distributions than by Pearson Type III distributions in so far as estimating the 

T = 50 − Year  for 70 year sequences of annual 1-day high flows. The results for 70 year 

sequences of annual 1-day high flows carry over to 100 year sequences annual peak flows 

for both the estimates of the T = 50 − Year  floods and the 100 − year  floods.  

 

The Right-Tail Normal distribution is a Normal distribution whose parameters, the 

mean, µ , and standard deviation, σ , are estimated using only the observations of values 

greater than the threshold value, namely the median. None of the three methods are 

based on moments greater than the second and are therefore not dependent on the 

overall skewness of the observations. In effect, the Right-Tail Normal distributions side 

steps the need to either estimate the skewness of the observations or the censor some of 

the smaller observation followed by a redistribution of the total probability mass. In a 

sense, it can be said that using the Right-Tail Normal distribution instead of the Pearson 

Type III distribution reduces the uncertainty in the estimates of flood quantiles greater 

than the median. 

 

If the chance negativities giving rise to flood risk are taken into account, it is quite likely 

that the negativities arise for floods above a threshold value. If that threshold is near the 

median flood, than a case can be made for choosing the Right-Tail Normal distribution 

over the Pearson Type III distribution. If the Right -Tail Normal distribution 

outperforms the Pearson Type III distribution in log space or in quasi-log space, then the 

Right-Tail Log Normal distribution will outperform the Log Pearson Type III 

distribution in real space, and conversely. 
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Space of Annual 14-Day High Fows with Right Tail Fitted with a 
Normal Distribution µ = 0,σ = 0.210( ) 

G-2 

G-4 Upper Mississippi Basin – Regionalizes Distribution in Quasi-Log 
Space of Annual 30-Day High Fows with Right Tail Fitted with a 
Normal Distribution µ = 0,σ = 0.207( ) 

G-3 

G-5 Upper Mississippi Basin – Regionalizes Distribution in Quasi-Log 
Space of Annual 60-Day High Fows with Right Tail Fitted with a 
Normal Distribution µ = 0,σ = 0.182( ) 

G-3 

G-6 Upper Mississippi Basin – Regionalizes Distribution in Quasi-Log 
Space of Annual 90-Day High Fows with Right Tail Fitted with a 
Normal Distribution µ = 0,σ = 0.174( ) 

G-4 

G-7 Upper Mississippi Basin – Regionalizes Distribution in Quasi-Log 
Space of Annual 180-Day High Fows with Right Tail Fitted with 
a Normal Distribution µ = 0,σ = 0.157( ) 

G-4 

G-8 Upper Mississippi Basin – Regionalizes Distribution in Quasi-Log 
Space of Annual Annual Mean Fows with Right Tail Fitted with a 
Normal Distribution µ = 0,σ = 0.172( ) 

G-5 

G-9 Missouri Basin – Regionalizes Distribution in Quasi-Log Space of 
Annual 3-Day High Fows with Right Tail Fitted with a Normal 
Distribution µ = 0,σ = 0.228( ) 

G-5 

G-10 Missouri Basin – Regionalizes Distribution in Quasi-Log Space of 
Annual 7-Day High Fows with Right Tail Fitted with a Normal 
Distribution µ = 0,σ = 0.221( ) 

G-6 

G-11 Missouri Basin – Regionalizes Distribution in Quasi-Log Space of 
Annual 14-Day High Fows with Right Tail Fitted with a Normal 
Distribution µ = 0,σ = 0.221( ) 

G-6 

G-12 Missouri Basin – Regionalizes Distribution in Quasi-Log Space of 
Annual 30-Day High Fows with Right Tail Fitted with a Normal 
Distribution µ = 0,σ = 0.227( ) 

G-7 

   

 
Figures (Continued) 

 
G-13 Missouri Basin – Regionalizes Distribution in Quasi-Log Space of 

Annual 60-Day High Fows with Right Tail Fitted with a Normal 
Distribution µ = 0,σ = 0.284( ) 

G-7 
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G-14 Missouri Basin – Regionalizes Distribution in Quasi-Log Space of 
Annual 90-Day High Fows with Right Tail Fitted with a Normal 
Distribution µ = 0,σ = 0.274( ) 

G-8 

G-15 Missouri Basin – Regionalizes Distribution in Quasi-Log Space of 
Annual 180-Day High Fows with Right Tail Fitted with a 
Normal Distribution µ = 0,σ = 0.260( ) 

G-8 

G-16 Missouri Basin – Regionalizes Distribution in Quasi-Log Space of 
Annual Mean Fows with Right Tail Fitted with a Normal 
Distribution µ = 0,σ = 0.249( ) 

G-9 

H-1 Normal Distribution γ = 0( ) Relative to a Weibull/Normal 
Distribution Bound Below γ = 0.05( ) 

H-9 

H-2 Normal Distribution γ = 0( ) Relative to a Weibull/Normal 
Distribution Bound Below γ = 0.25( ) 

H-9 

H-3 Normal Distribution γ = 0( ) Relative to a Weibull/Normal 
Distribution Bound Below γ = 0.5( ) 

H-10 

H-4 Normal Distribution γ = 0( ) Relative to a Weibull/Normal 
Distribution Unbound Below γ = −0.05( ) 

H-10 

H-5 Normal Distribution γ = 0( ) Relative to a Weibull/Normal 
Distribution Unbound Below γ = −0.50( ) 

H-11 

H-6 Normal Distribution γ = 0( ) Relative to a Weibull/Normal 
Distribution Unbound Below γ = −0.25( ) 

H-11 

I-1 Upper Mississippi Basin (St. Croix at St. Croix, WI) – Distribution 
in Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-1 

I-2 Upper Mississippi Basin (Jump at Sheldon, WI) – Distribution in 
Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-2 

I-3 Upper Mississippi Basin (Black at Sheldon, WI) – Distribution in 
Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-2 

I-4 Upper Mississippi Basin (Maquaketa at Maquaketa, IA) – 
Distribution in Log Space of Annual 1-Day High Flows Fitted 
with a Pearson Type III Distribution and a Right-Tail Normal 
Distribution 

I-3 
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I-5 Upper Mississippi Basin (Mississippi at Clinton, IA) – Distribution 

in Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-3 

I-6 Upper Mississippi Basin (Rock at Afton, WI) – Distribution in Log 
Space of Annual 1-Day High Flows Fitted with a Pearson Type 
III Distribution and a Right-Tail Normal Distribution 

I-4 

I-7 Upper Mississippi Basin (Sugar at Broadhead, WI) – Distribution in 
Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-4 

I-8 Upper Mississippi Basin (Pecatonica at Freeport, IL) – Distribution 
in Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-5 

I-9 Upper Mississippi Basin (Cedar at Cedar Rapids, IA) – Distribution 
in Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-5 

I-10 Upper Mississippi Basin (Skunk at Augusta, IA) – Distribution in 
Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-6 

I-11 Upper Mississippi Basin (Mississippi at Keokuk, IA) – Distribution 
in Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-6 

I-12 Upper Mississippi Basin (Des Moines at Stratford, IA) – 
Distribution in Log Space of Annual 1-Day High Flows Fitted 
with a Pearson Type III Distribution and a Right-Tail Normal 
Distribution 

I-7 

I-13 Upper Mississippi Basin (Racoon at Van Meter, IA) – Distribution 
in Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-7 

I-14 Upper Mississippi Basin (Iroquois at Chebanse, IL) – Distribution 
in Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-8 

I-15 Upper Mississippi Basin (Kankakee at Momence, IL) – Distribution 
in Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-8 
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I-16 Upper Mississippi Basin (Spoon at Seville, IL) – Distribution in Log 

Space of Annual 1-Day High Flows Fitted with a Pearson Type 
III Distribution and a Right-Tail Normal Distribution 

I-9 

I-17 Upper Mississippi Basin (La Moines at Ripely, IL) – Distribution in 
Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-9 
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I-18 Upper Mississippi Basin (Meramec at Steelville, MO) – Distribution 
in Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-10 

I-19 Upper Mississippi Basin (Bourbeuse at Union, MO) – Distribution 
in Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-10 

I-20 Upper Mississippi Basin (Big at Byrnesville, MO) – Distribution in 
Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-11 

I-21 Upper Mississippi Basin (Meramec at Eureka, MO) – Distribution 
in Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and a Right-Tail Normal Distribution 

I-11 

I-22 Missouri Basin (Yellowstone at Augusta, IA) – Distribution in Log 
Space of Annual 1-Day High Flows Fitted with a Pearson Type 
III Distribution and with a Right-Tail Normal Distribution 

I-12 

I-23 Missouri Basin (Clarks Fork at Belfry, MT) – Distribution in Log 
Space of Annual 1-Day High Flows Fitted with a Pearson Type 
III Distribution and with a Right-Tail Normal Distribution 

I-12 

I-24 Missouri Basin (Yellowstone at Billings, MT) – Distribution in Log 
Space of Annual 1-Day High Flows Fitted with a Pearson Type 
III Distribution and with a Right-Tail Normal Distribution 

I-13 

I-25 Missouri Basin (Big Sioux at Akron, IA) – Distribution in Log Space 
of Annual 1-Day High Flows Fitted with a Pearson Type III 
Distribution and with a Right-Tail Normal Distribution 

I-13 

I-26 Missouri Basin (North Platte at Northgate, CO) – Distribution in 
Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and with a Right-Tail Normal Distribution 

I-14 

I-27 Missouri Basin (Bear at Morrison, CO) – Distribution in Log Space 
of Annual 1-Day High Flows Fitted with a Pearson Type III 
Distribution and with a Right-Tail Normal Distribution 

I-14 
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I-28 Missouri Basin (Elkhorn at Waterloo, NE) – Distribution in Log 
Space of Annual 1-Day High Flows Fitted with a Pearson Type 
III Distribution and with a Right-Tail Normal Distribution 

I-15 

I-29 Missouri Basin (Nishnabottna at Hamburg, IA) – Distribution in 
Log Space of Annual 1-Day High Flows Fitted with a Pearson 
Type III Distribution and with a Right-Tail Normal Distribution 

I-15 

I-30 Missouri Basin (Grand at Gallatin, MO) – Distribution in Log 
Space of Annual 1-Day High Flows Fitted with a Pearson Type 
III Distribution and with a Right-Tail Normal Distribution 

I-16 

I-31 Missouri Basin (Thompson at Trenton, MO) – Distribution in Log 
Space of Annual 1-Day High Flows Fitted with a Pearson Type 
III Distribution and with a Right-Tail Normal Distribution 

I-16 
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I-32 Missouri Basin (Gasconade at Jerome, MO) – Distribution in Log 
Space of Annual 1-Day High Flows Fitted with a Pearson Type 
III Distribution and with a Right-Tail Normal Distribution 

I-17 

J-1 Upper Mississippi Basin – Regionalized Distribution in Log Space of 
Annual 1-Day High Flows Fitted with a Pearson Type III 
Distribution and with a Right-Tail Normal Distribution – 
Inflection Point Method 

J-1 

J-2 Upper Mississippi Basin – Regionalized Distribution in Log Space of 
Annual 1-Day High Flows Fitted with a Pearson Type III 
Distribution and with a Right-Tail Normal Distribution – 35 
Point Method 
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J-3 Upper Mississippi Basin – Regionalized Distribution in Log Space of 
Annual 1-Day High Flows Fitted with a Pearson Type III 
Distribution and with a Right-Tail Normal Distribution – 
Mirrored Spread Method 
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J-4 Missouri Basin – Regionalized Distribution in Log Space of Annual 
1-Day High Flows Fitted with a Pearson Type III Distribution 
and with a Right-Tail Normal Distribution – Inflection Point 
Method 

J-3 

J-5 Missouri Basin – Regionalized Distribution in Log Space of Annual 
1-Day High Flows Fitted with a Pearson Type III Distribution 
and with a Right-Tail Normal Distribution – 35 Point Method 

J-3 

J-6 Missouri Basin – Regionalized Distribution in Log Space of Annual 
1-Day High Flows Fitted with a Pearson Type III Distribution 
and with a Right-Tail Normal Distribution – Mirrored Spread 
Method 

J-4 
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J-8 Upper Mississippi Basin – Regionalized Distribution in Quasi-Log 
Space of Annual 1-Day High Flows Fitted with a Pearson Type 
III Distribution and with a Right-Tail Normal Distribution – 35 
Point Method 
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J-9 Upper Mississippi Basin – Regionalized Distribution in Quasi-Log 
Space of Annual 1-Day High Flows Fitted with a Pearson Type 
III Distribution and with a Right-Tail Normal Distribution – 
Mirrored Spread Method 
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J-10 Missouri Basin – Regionalized Distribution in Quasi-Log Space of 
Annual 1-Day High Flows Fitted with a Pearson Type III 
Distribution and with a Right-Tail Normal Distribution – 
Inflection Point Method 
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J-11 Missouri Basin – Regionalized Distribution in Quasi-Log Space of 
Annual 1-Day High Flows Fitted with a Pearson Type III 
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Point Method 
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J-12 Missouri – Regionalized Distribution in Quasi-Log Space of Annual 
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K-2 Upper Mississippi Basin (Winona, MN) – Distribution in Log Space 
of Annual Peak Flows Fitted with a Pearson Type III Distribution 
and with a Right-Tail Normal Distribution 
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K-3 Upper Mississippi Basin (Dubuque, IA) – Distribution in Log Space 
of Annual Peak Flows Fitted with a Pearson Type III Distribution 
and with a Right-Tail Normal Distribution 
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K-4 Upper Mississippi Basin (Clinton, MO) – Distribution in Log Space 
of Annual Peak Flows Fitted with a Pearson Type III Distribution 
and with a Right-Tail Normal Distribution 
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K-5 Upper Mississippi Basin (Keokuk, IA) – Distribution in Log Space 
of Annual Peak Flows Fitted with a Pearson Type III Distribution 
and with a Right-Tail Normal Distribution 

K-3 
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UNCERTAINTY OF FLOOD FREQUENCY ESTIMATES 

Introduction 

The long standing practice of flood frequency analysis presumes sequences of observed 

annual floods to be realizations of independent and identically distributed (iid) random 

variables. In order to limit disagreements among federal agencies in estimating flood a 

quantile at a particular sites, the agencies have sought to identify a specific distribution to 

be used by all agencies in flood quantile estimation. Through the U.S. Water Resources 

Council, the federal agencies adopted the Log-Pearson Type III distribution with the 

understanding that unless another distribution could be shown to be better, the Log-

Pearson Type III distribution would be used by all federal agencies in reference to a 

specific site. The procedures by which flood quantiles conditioned on the Log-Pearson 

Type III distribution are estimated are defined in Bulletin 17-B of the Interagency 

Committee on Water Data originally published by the U.S. Water Resources Council 

(1981). 

 

Until recently, the iid assumption underlying flood frequency analysis has been 

unquestioned. As the issue of climate change moved higher on the public agenda, 

hydrologists have given greater attention to the study of the extent to which hydrologic 

change is a reflection of climate change induced by global warming or a reflection of 

change in land use. For the most part the studies have sought to show that flow 

sequences are marked by trends, whereby the iid assumption does not hold. Sequences of 

annual floods are seemingly less prone to reflect trends than sequences of annual mean or 

low flows. Because a trend may be part of a slow oscillator movement, an assessment of 

trend is best accompanied by an assessment of persistence. Without entering into study 

to establish the presence or absence of trends or of persistence in flood sequences, the 

uncertainty in flood frequency estimates induced by relaxation of the iid assumption is 

examined. Relaxation in the iid assumption leads to greater flood risk. 

 

Uncertainty in flood frequency estimates is not limited to the questioning of the iid 

assumption. Even if the iid assumption holds, there is uncertainty related to statistical 
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errors in the estimates of flood quantiles. Assessment of statistical errors has been and 

continues to be standard hydrologic practice.  

 

Through flood frequency analysis, an estimate of a particular flood quantile, such as the 

magnitude of the 100-year flood, is derived. It is recognized that the estimate is subject to 

error. The error introduces uncertainty in using the estimated quantile in an operational 

situation. A decision for effecting mitigation of flood loses that in part, at least, 

incorporates the estimated quantile, is made under uncertainty. The uncertainty derives 

from several sources, of which the error of estimation in the flood quantile is one. It is 

that source which is a subject of investigation in this report. 

 

The error in the estimation of a flood quantile is a function of 1) the length of the flood 

sequence, 2) the choice of probability distribution, 3) the method used to estimate the 

parameters of the chosen distribution and 4) the definition of the plotting position. 

Because the length of a sequence can only increase with the passage of time, efforts are 

made to effect an increase in record length through correlations with sequences of greater 

length, i.e. to effect a transfer of information to the site of interest from sites having 

longer sequences.  

 

Of the various contributors to the error in the estimate of a flood quantile, only one is 

considered herein, namely, the contribution derived via the estimation of the skewness. 

The statistical sampling error in the estimate of skewness is recognized as a major source 

of uncertainty in the an estimate of a flood quantile. In the following discussion, the 

estimation of skewness per se is not addressed. Rather, the issue of estimating skewness is 

side stepped in log space by considering the use of a Right-Tail Normal distribution in 

place of the Pearson Type III distribution. The Right-Tail Normal distribution is a 

Normal distribution whose right tail is determined from the logs of the observation 

without fit of the left tail. If the Right-Tail Normal distribution provides better estimates 

of quantiles in log space than the Pearson Type III distribution, then the Right-Tail Log-

Normal distribution provides better estimates of quantiles in real space than the Log-

Pearson Type III distribution, and conversely. By considering a Right-Tail Normal 

distribution, there is no need to consider censoring 
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some of the smaller floods to effect a better estimates of flood quantiles via a truncated 

Log Pearson Type III distribution as outlined by Bulletin 17-B. 

 

The relative goodness of fit of the Right-Tail Normal distribution and the Pearson Type 

III distribution is examined on both an at-site and regional basis. 

 

Assessing the effects of relaxation in the iid assumption provides better understanding of 

flood risk and uncertainty. Adopting a Right-Tail Log-Normal distribution as an 

alternative to the Log-Pearson Type III distribution effects, so to speak, a reduction in 

flood uncertainty without increasing costs or reducing benefits. Basically the Right-Tail 

Log-Normal distribution effects simplification of flood frequency analysis, and it puts the 

emphasis where it should be – on the fitting of the right tail to an ordered sequence of 

observed floods. 

 

The study is based on observed sequences of annual 1-day high flows and annual peak 

flows at sites within the Upper Mississippi and Lower Missouri basins. With focus on 

flood risk and uncertainty, the definitions of risk and uncertainty given by the U.S. 

Water Resources Council (1983) in their report, Economic and Environmental 

Principals and Guidelines for Water and Related Resource Implementation Studies are 

briefly reviewed. 

 

Prelude to the study, the spectrum of sequences of extreme flows of various durations, 

varying from annual 1-day low flow to annual mean flow to annual 1-day high flows are 

statistically described on both an at-site and a regional basis. 
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Background 
Study Region and Data Base 

The study is limited to sequences at sites within the Upper Mississippi and Missouri 

basins. The Missouri basin contributes about 528,000 mi2 to the total drainage area of 

about 697,000 mi2  for the two basins at St. Louis, MO. The two basins extend over 21° 

of longitude, approximately 1,000 mi and 8 ° of latitude, approximately 550 mi. 

Streamflow sequences at 44 sites, 26 in the Upper Mississippi basin and 18 in the Lower 

Missouri basin are used to assess the uncertainty of flood frequency estimates. The 44 

sites are partitioned into two sets. The first set consists of 21 sites in the Upper 

Mississippi basin and 11 sites in the Lower Missouri basin. See Table 1. 

 



Prepared  by  5 
Nicholas C. Matalas 709 Glyndon St., S.E.  
Hydrologist Vienna, VA 22180 1/22/01 

Prepared as Subcontractor to Under Contract to Contract 
Planning & Management  US Army Corps of Engineers Climate Variability and  
Consultants, Ltd. Institute of Water Resources Change and the Uncertainty of 
Carbondale, IL 62903 Ft. Belvoir, VA 22315 Flood Frequency Estimates 

 

Flow sequences of the first set of sites were structured from the daily flows taken from the 

Hydro-Climatic Data Network (HCDN) developed by Slack, Lumb and Landwehr 

(1993). The structured flows were the set of annual (October 1 through September 30) 

extreme flows for various durations, varying from the annual 1 − day  low flow to the 

Table 1:  General Description of Flow Sites in the Upper Mississippi and Lower 
Missouri Basin 

Stream Locale State Lati-    
tude    

(deg.) 

Longi   
tude     

(deg.) 

Drainage 
Area      

(sq. mi.) 

Period of 
observed 
Sequence 

Upper Mississippi Basin 

St. Croix St. Croix WI 45.41 -92.65 6,240 1911-1998 
Jump Sheldon WI 45.31 -90.98 576 1916-1998 
Black Neillsville WI 44.58 -90.61 749 1914-1998 
Maquaketa Maquaketa IA 42.08 -90.63 1,553 1914-1998 
Mississippi Clinton IA 41.78 -90.25 85,600 1874-1998 
Rock Afton WI 42.61 -89.07 3,340 1915-1998 
Sugar Broadhead WI 42.61 -89.40 923 1915-1998 
Pecatonica Freeport IL 42.30 -89.62 1,326 1915-1998 
Cedar Cedar Rapids IA 41.97 -91.67 6,510 1903-1998 
Skunk Augusta IA 40.75 -91.28 4,303 1915-1998 

Mississippi Keokuk IA 40.39 -91.37 119,000 1879-1998 
Des Moines Stratford IA 42.25 -94.00 5,452 1921-1998 
Raccoon Van Meter IA 41.53 -93.95 3,441 1916-1998 
Iroquois Chebanse IL 41.01 -87.82 2,091 1924-1998 
Kankakee Momence IL 41.16 -87.67 2,294 1916-1998 
Spoon Seville IL 40.49 -90.34 1,636 1915-1998 
La Moines Ripely IL 40.03 -90.63 1,293 1922-1998 
Meramec Steelville MO 38.00 -91.36 781 1923-1998 
Bourbeuse Union MO 38.45 -90.99 808 1922-1998 
Big Byrnesville MO 38.36 -90.65 917 1923-1998 

Meramec Eureka MO 38.51 -90.59 3,788 1922-1998 

Lower Missouri Basin 

Yellowstone Corwin Springs MT 45.11 -109.21 2,623 1911-1998 
Clarks Fork Belfry MT 45.01 -108.94 1,154 1922-1998 
Yellowstone Billings MT 45.80 -107.53 11,795 1929-1998 
Big Sioux Akron IA 42.84 -95.44 8,424 1929-1998 
North Platte Northgate CO 40.94 -105.66 1,431 1916-1998 
Bear Morrison CO 39.65 -104.80 164 1920-1998 
Elkhorn Waterloo NE 41.29 -95.72 6,900 1929-1998 
Nishnabottna Hamburg IA 40.63 -94.37 2,806 1929-1998 
Grand Gallatin MO 39.93 -92.06 2,250 1921-1998 
Thompson Trenton M) 40.08 -92.36 1,670 1929-1998 

Gasconade Jerome MO 37.93 -90.02 2,840 1924-1998 
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annual mean flow to the annual 1 − day  high flow. The set of structure flows is referred 

to as the extreme flow spectrum. See Appendix A and Appendix B. 

 

For purpose of study, the flow sequences all spanned the 70 year period 1927 through 

1998. The period is the longest common period at the sites in the two basins. 

 

The second set formed by the partition of the 44 sites in the two basin consists of 7 sites 

in the Upper Mississippi basin and 7 sites in the Lower Missouri basin, where 2 sites in 

the Upper Mississippi basin are also in the first set. See Table 2. 

 

 

The flow sequences of the second set of sites are annual peak flows. For purpose of study, 

all the sequences at sites along the Upper Mississippi river spanned the 100-year period 

1896-1995, and all the sequences along the Lower Missouri river spanned the 100-year 

period 1898-1997. 

 
Geographic Distribution of Sites 

The geographic distributions of the sites belonging to the two sets are shown  

Table 2:  General Description of Flow Sites on the Upper 
Mississippi and Lower Missouri Rivers 

Locale State Lati-    
tude    

(deg.) 

Longi   
tude     

(deg.) 

Drainage 
Area      

(sq. mi.) 

Period of 
observed 
Sequence 

Upper Mississippi River 

St. Paul MN 45.00 -93.17 36,800 1867-1995 
Winona MN 44.03 -91.62 59,200 1885-1995 
Dubuque IO 42.52 -90.68 82,000 1879-1996 
Clinton IO 41.25 -90.20 85,600 1875-1996 
Keokuk IO 40.38 -91.42 119,000 1875-1996 
Hannibal MO 39.68 -91.33 137,000 1879-1996 
St. Louis MO 38.67 -90.25 697,013 1861-1995 

Lower Missouri River 

Sioux City IO 42.50 -96.47 314,600 1898-1997 
Omaha NE 41.25 -96.00 322,820 1889-1997 
Nebraska City NE 40.68 -95.83 414,439 1889-1997 
St. Joseph MO 39.77 -94.87 429,340 1889-1997 
Kansas City MO 39.03 -94.55 489,162 1889-1997 
Booneville MO 38.97 -92.71 505,710 1889-1997 
Hermann MO 38.71 -91.43 528,200 1889-1997 
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schematically in Figures 1 and 2. 
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Statistical Descriptors of Sequences 

The sequences are assessed in real space and in log space, and on an at-site basis and on a 

regionalized basis. An arbitrary sequence of length n ,  xt: t = 1,K, n{ } in real space, on an 

at-site or regionalized basis, is described in terms of the standard statistical descriptors, 

namely, the mean , x , standard deviation, sx , the coefficient of variation, Cv , coefficient 

of skewness, Sk , and the coefficient of kurtosis, Ku , where 
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x = xt
t=1

n
∑ n  (1) 

 

sx = x t − x ( )2

t=1

n
∑ n − 1( ){ }1 2

 (2) 

 

Cv = s x  (3) 

 

Sk = n n − 1( ) n − 2( ){ } x t − x ( ) sx[ ]3

t=1

n
∑  (4) 

 

Ku = n n + 1( ) n − 1( ) n − 2( ) n − 3( ){ } xt − x ( ) sx[ ]4

t=1

n
∑

− 3 n − 1( )2 n − 2( ) n − 3( ){ }
 (5) 

 

Description in log space, on an at-site or regionalized basis, is given by replacing xt  by 

yt = ln xt( ). 

 

See Appendix C. 
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Risk and Uncertainty 

The notions of risk and uncertainty are central to water management. Federal water 

agencies deal with risk and uncertainty following the definitions of risk and uncertainty 

given by the U.S. Water Resources Council (1983) in the Economic and Environmental 

Principles and Guidelines for Water and Related Land Resource Implementation Studies. 

The Council’s report is referred to herein as the Principles and Guidelines. The 

definition of risk is fairly clear, however, the definition of uncertainty is murky. Often 

precise definitions of terms are not necessary. But in cases where imprecision in the 

definition of terms limits the range of view of the issues under study, clear definitions of 

terms are warranted. Such is the case with the definition of uncertainty in water 

management.  

 
Principles and Guidelines Perspective 

In the Principles and Guidelines, risk and uncertainty are defined in the context of 

situations that relate to the ability to describe potential outcomes in probabilistic terms. 

Outcomes may be interpreted as possible consequences sequel to an act, i.e. a decision. 

Within this context, the Council states that 

  situations of risk are detained [defined] as those in which the potential 
outcome can be described in reasonably well-known probability 
distributions such as the probability of particular flood events 

and that 

  situations of uncertainty are defined as those in which potential 
outcomes cannot be described in objectively known probability 
distribution. 

In the case of risk, the potential outcomes can be described in “reasonably well known 

probability distributions.” It does not matter if the probability distribution is reasonably 

well known or not. What matter is that risk entails probability. The extend to which the 

probability distribution is known affects how well risk can be assessed. It should be noted 

that linking risk to probability leaves open the question whether probability is best 

interpreted as being objective or personalistic. Addressing the question is outside the 

scope of this study. 
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In the case of uncertainty, the Principles and Guidelines state that the outcomes “can not 

be described [by] objectively known probability distributions” because as stated later, 

“there are no known probability distributions to describe uncertain outcomes.” It is 

unclear what the Principles and Guidelines mean by there being “no known probability 

distributions.” Are uncertain outcomes governed by a probability law with which one has 

no familiarity? Is the governing probability law unknown because all the potential 

outcomes are unknown? Is the probability law unknown because the potential outcomes 

are not governed by a  probability law? Is the probability law unknown because the law is 

not an objective law but a stated degree of belief that accords with the calculus of 

probability?  

 

Risk and uncertainty are said to derive from measuring error and from the variability that 

is inherent in natural, social and economic processes. No less important are sampling 

errors in parameter estimates that derived from “short” finite lengths of observations on 

natural, social and economic processes in cases where the processes may be considered to 

be stochastic processes.  

 

The Principles and Guidelines state that some risks and uncertainties can be eliminated 

through increased project costs or through reduction in program benefits, while others 

can not. Elimination of risk to a degree, i.e. reduction in risk, may follow from various 

actions, e.g., collection of additional information, using techniques that offer higher 

orders of approximation, incorporating more stringent factors of safety into the system 

design, hedging on committing to large capital investments early in the development 

stage, and conducting sensitivity analyses of the estimated costs and benefits of 

alternative system designs. Adding robustness, redundancy and resilience to project 

designs effects a reduction in risk with the occurrence of greater project costs. See 

Matalas and Fiering (1977). 

 
Alternative Perspective 

Risk relates to the chance occurrence of something unwanted. Rescher (1983) expressed 

risk as the chancing of negativity and noted that there is a difference in taking a risk and 

in facing a risk. To take a risk is to make a conscious decision that 
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enhances the occurrence of some unfortunate event., e.g. the loss of property or life as a 

result of an extreme flood sequel to deciding to dwell on the flood plain. To face a risk is 

to be so positioned that harm might be experienced, e.g. the situation of the residents of 

Johnstown, Pennsylvania on the morning of May 31, 1889. 

 

Risk, R , is often measured as 

 

R = CP  (6) 

 

where C  denotes the adverse consequence whose occurrence with probability P  is sequel 

to a specific act, i.e. a (flood management) decision. Adverse consequence refers to 

damage or loss of property or to injury or loss of life. Eq. (6) defines risk as an expected 

value. In choosing among risks, one may choose that risk having the smaller expected 

value. However, the expected value does not preclude the use other measures of  risk. 

 

In taking or facing risk, one must contend with uncertainty, where uncertainty may 

derive from imperfect knowledge or from incomplete knowledge. Imperfect knowledge 

presumes that all the possible consequences (outcomes) of an act, i.e. decision, are known 

or could be known with the expenditure of resources prior to the act. In effect, the 

sample space is known and therefore probabilities, objective or otherwise, can be assigned 

to the possible outcomes. Knowledge is said to be imperfect because, though we know 

that one of a set of possible outcomes will follow from a decision, we do not know with 

certainty which outcome it will be. Because our knowledge is imperfect, our distribution 

of the total probability mass over all the outcomes is very likely to be questionable. 

 

Incomplete knowledge, i.e., ignorance, implies that not only are some if not all the 

outcomes unknown at the time a decision is to be made, they are unknowable. Thus the 

sample space is incomplete and expenditure of resources can not reveal the unknown 

outcomes. Because we do not know just what it is that is unknown, resources can not be 

directed to make that which is unknown known. As put by Shackle (1949), 
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knowledge can not be gained before its time. Because the sample space is incomplete, 

probabilities, personalistic or otherwise, can not be assigned to those outcomes that are 

not known.  

 

A situation of incomplete knowledge is a situation of a special case of uncertainty that 

Davidson (1991) termed “true” uncertainty. By defining incomplete knowledge as a 

situation of true uncertainty, the term uncertainty can be used in cases where risk and 

uncertainty are understood within the same linguistic context, namely, that of  

probability. For example, it seems natural to speak of the uncertainty of a gain or a loss 

and to speak of the risk of a loss rather than the uncertainty of a gain. It seems more 

natural to speak of the uncertainty in statistical estimates rather than the risk in statistical 

estimates. Though a risky situation may not be a strictly uncertain situation, risk and 

uncertainty may each be mapped into probability. The sampling errors associated with 

estimates of statistical parameters are described by a probability distribution.  

 

By differentiating between uncertainty and true uncertainty, one may identify situations 

where a metric other than probability must be used to measure true uncertainty. If such 

situations do not exist within the domain of water management, then a risky situation 

may be viewed similarly as an uncertain situation, situations calling for a probability 

measure. It follows that all possible outcomes are known and thereby, the total 

probability mass may be distributed over the outcomes. If there are situations of true 

uncertainty, then the general framework under which water management is conducted 

will need to be reviewed by the federal water agencies and other responsible parties in the 

business and academic community. Clearly, the definition of uncertainty in the 

Principles and Guidelines needs clarification. Discussion of a metric of true uncertainty is 

outside the scope of this study. 

 
Flood Frequency Analysis 

Rafter (1895) was among the first to suggest adopting a probabilistic perspective of 

floods. Within 20 years, flood frequency analysis evolved into its present form through 

the work of Hazen (1914), Fuller (1914) and others. Basically, flood frequency analysis 
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presumes, implicitly at least, a sequence of observed annual floods to be a realization of a 

sequence of independent and identically distributed random variables. The observations 

are ranked from smallest to largest and to each, a probability is assigned. The assigned 

probability, defined in terms of the total number of observations in the sequence, n , and 

the rank value, i , of the ordered observations, where  i = 1,K,n , is referred to as the 

plotting position, an estimate of the probability, P i( ), of exceeding the magnitude of the 

i − th  ranked flood. A probability distribution of specific mathematical form is fitted to 

the ranked observations, where the parameters of the distribution are estimated from the 

observations by a specific statistical method. From the fitted distribution, a flood 

magnitude, x ′ P ( ), corresponding to a specified exceedence probability, ′ P , can be 

obtained graphically, analytically or by numerical integration.  

 

The inverse of the exceedence probability is referred to as the return period, 

 
T = 1 P  (7) 

 

The quantity x ′ T ( ) = x ′ P ( ) is referred to as the ′ T − year  flood, the flood having an 

exceedence probability of ′ P . 
 

In the United States, flood frequency analysis is currently conducted by federal agencies 

in accordance with Bulletin 17-B. Basically, the bulletin spells out the procedure for 

estimating the T − year  flood via fitting the Log-Pearson Type III distribution to an 

ordered set of observed floods. The estimates of the exceedence probabilities of the 

observations are defined as Weibull plotting positions, 

 
ˆ P x > x i( )[ ]= P i( )

= i n + 1( )
 (8) 

 

where, ˆ P x > x i( )[ ]= P i( ) denotes the estimated exceedence probability of the i − th  ranked 

flood, i.e. the probability of a flood x  exceeding the observed flood of rank i , x i( ) , in a 

sequence of n  observed floods. 
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The Log-Pearson Type III distribution is fitted using the method of moments to estimate 

the location and scale parameters of the distribution. The measure of the distribution’s 

skewness (degree of asymmetry) is estimated through a procedure that takes into account 

estimates of measures of skewness of observed flood sequences at other sites in the 

“vicinity” of the primary site of interest, the site where an estimate of the T − year  flood 

is specifically sought. 

 

Bulletin 17-B allows for estimating the T − year  flood via fitting an alternative 

distribution if it can be shown that use of an alternative distribution is warranted, i.e. 

better in some meaningful way. However, the bulletin does not set forth explicit terms on 

which judgment can be made as to whether or not the use of an alternate distribution is 

warranted. 

 

The T − year  flood is unknown, but it is, of course, knowable. It would be a 

contradiction in terms to say that the T − year  flood is unknowable. An estimate of the 

T − year  flood is a conditional statement – the estimate is conditioned on an assumed 

distribution, in particular the Log-Pearson Type III distribution. As a conditional 

statement, reference may be made to the uncertainty in the value of the T − year  flood. 

Traditionally, concern over the uncertainty in the estimate of the T − year  flood has 

focused on the following factors: 1) the length of the sequence, 2) the choice of the 

distribution function, 3) the method used to estimate the parameters of the chosen 

distribution function and 4) the definition of the plotting position. Because the length of 

a sequence can only increase with the passage of time, efforts are made to effect an 

increase in record length through correlation with sequences of greater length, i.e. to 

effect a transfer of information to the site of interest  from sites having longer sequences. 

These efforts are referred to as regionalization. 

 

The issue of global warming has broaden the concern over uncertainty in the T − year  

flood with focus on trend in the observations of annual floods. This focus is on 

questioning the presumption that a sequence of observed floods to be a realization of a 

sequence of identically distributed random variables. Hydrologic time series are short on 

a geophysical scale so we can never be certain that a trend is not part of a slow 
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oscillation unless the series ends. See e.g. Kendall and Stuart (1966). Moreover, we can 

never be certain that oscillatory movement is not a reflection of persistence implying that 

a sequence of observed floods are not a realization of a sequence of independently 

distributed random variables. Thus, uncertainty in the T − year  flood as a consequence 

of global warming calls into question the assumption that a sequence of observed floods 

is a realization of a sequence of independent and identically distributed random variables. 
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An Assessment of Trend and Persistence 

The issue of global warming has prompted an examination of hydrologic time series for 

trends. Trend is viewed as a sustained change in flow with time, where change is in terms 

of the mean or some other statistical characteristic of an observed flow sequence. An 

observed hydrologic flow sequence is regarded as a realization of a stochastic process. In 

the presence of trend, the stochastic process is in some way non-stationary. For example, 

the process may be nonstationary in the mean, but stationary in all other respects. If the 

process is nonstationary in the k − th  order moment, presuming that the moment exists, 

then the process is non-stationary in all lower order moments.  

 

If a trend is indeed a trend, positive or negative, it has a beginning and an end. A trend 

can not persist indefinitely. If a trend were to persist indefinitely, flow would either 

exceed the carrying capacity of the basin or the basin would become dry. See Olsen et al 

(1999). A trend may in fact be a “trend” reflecting an oscillatory wave of low frequency. 

More generally, a time series may be a composition of a large number of oscillatory waves 

of varying frequency and such that the time series is stationary though perhaps persistent. 

Stationary persistence is measured by the dependence between flows at different times, 

where the degree of dependence is determined by the interval between the times and not 

by the times themselves. If the frequency of a wave translates into a period greater than 

the observation period of the time series, then the series may appear to be trending. See 

e.g. Planning & Management Consultants, Ltd. (1999). 

 

The distinction between trend and persistence is operationally important. In particular, 

the distinction is important to flood frequency analysis. Heretofore, flood frequency 

analyses have been conducted under the assumption, implicit or otherwise, that flood 

sequences are realizations of stationary stochastic processes. More specifically, a flood 

sequence has been viewed as a sequence of independent and identically distributed (iid) 

random variables, a realization of a purely random process. 
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Under the iid assumption, the future mirrors the past, whereby an estimate of a specific 

flow quantile based on an observed flow sequence differs from the quantile by amount 

within the bounds of sampling error. The distribution of sampling errors is the same for 

all future sequences of length equal to that of the observed sequence spanning the past. 

In the presence of trend, flows may be independently distributed, but not identically 

distributed. In the presence of persistence, flows may be identically distributed, but not 

independently distributed. In the presence of both trend and persistence, the flows are 

neither identical or independently distributed. If the iid assumption does not hold, then 

the uncertainty in estimates of flow quantiles can not be accounted for in terms of 

classical sampling errors, i.e. by sampling errors presuming the iid assumption holds 

implying that an observed flow sequence is a realization of a purely random process. 

 

In the following discussions, trend is limited to trend in the mean and is measured by the 

regression of flow on time. Persistence is limited to Markovian persistence and is 

measured by the first order autocorrelation coefficient. Limiting trend to linear trend 

over the period of observation and limiting persistence to Markovian persistence is meant 

to provide a first-order account of trend and persistence. In actuality, trend and 

persistence, if they exist, may be of more complicated forms. Linear trend is measured by 

the coefficient of linear regression of flow on time. Markovian persistence is measured as 

linear temporal dependence by the first order autocorrelation coefficient. 

 

Account is taken of residual trend, i.e. trend following de-Markoving flow sequences, and 

residual persistence, i.e. persistence following de-trending flow sequences. The analytical 

structure of de-Markoving and de-trending are given in Appendix D. 

 
Selected Elements of Flow Spectrum: Annual 1-Day High, Mean and 1-Day Low 

At the selected sites in the Upper Mississippi and Missouri basins, an assessment is made 

of trends and persistence in the sequences of annual 1-day high flows, annual mean flows 

and annual 1-day low flows. The assessment is summarized in Tables 3 through 5. For 

other elements of the flow spectrum, the assessment of trend and persistence is given in 

Appendix E 
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Table 3: Trend and Persistence of Annual 1-Day High Flows 

  Trend    Persistence  

 Obs. DT DM  Obs. DT DM 

 Upper Mississippi Basin 

St. Croix 0.003 0.000 0.004  0.186 0.182 0.013 
Jump -0.002 0.000 -0.002  0.083 0.081 -0.003 
Black -0.006 0.000 -0.006  -0.112 -0.127 -0.005 
Maquaketa -0.007 0.000 -0.007  0.082 0.070 -0.010 
Mississippi 0.013* 0.000 0.011  0.139 0.072 -0.020 
Rock 0.003 0.000 0.003  0.015 0.005 0.005 
Sugar -0.014 0.000 -0.014*  0.081 0.017 0.017 
Pectonica -0.010 0.000 -0.010  -0.007 -0.032 0.008 
Cedar 0.000 0.000 0.000  0.081 0.080 0.014 
Skunk 0.008 0.000 0.009  -0.048 -0.079 -0.002 
Mississippi 0.016** 0.000 0.013*  0.143 0.034 -0.006 
Des Moines 0.006 0.000 0.007  -0.037 -0.056 -0.005 
Raccoon 0.013* 0.000 0.012*  -0.051 -0.118 0.017 
Iroquois 0.017** 0.000 0.013*  0.215 0.115 0.031 
Kankakee 0.025** 0.000 0.019**  0.223 -0.083 -0.052 
Spoon 0.014** 0.000 0.014*  0.039 -0.054 -0.002 
La Moines 0.017** 0.000 0.014*  0.241* 0.126 0.007 
Meramec 0.007 0.000 0.003  -0.063 -0.074 0.034 
Bourbeuse 0.015** 0.000 0.014*  0.053 -0.038 -0.007 
Big 0.015** 0.000 0.013*  0.118 0.031 -0.006 
Meramec 0.012* 0.000 0.012  0.028 -0.031 -0.003 
        
Average 0.007 0.000 0.006  0.067 0.006 0.001 
Stdev 0.010 0.000 0.009  0.101 0.085 0.018 

 Missouri Basin 

Yellowstone 0.014* 0.000 0.013*  0.153 0.076 0.009 
Clarks Fork 0.009 0.000 0.009  0.211 0.183 0.066 
Yellowstone 0.011* 0.000 0.011  0.214 0.169 0.059 
Big Sioux 0.008 0.000 0.009  -0.022 -0.052 0.008 
North Platte 0.002 0.000 0.002  -0.033 -0.035 0.001 
Bear -0.006 0.000 -0.007  -0.035 -0.051 -0.008 
Elkhorn 0.010* 0.000 0.011  -0.090 -0.133 0.001 
Nisnabottna 0.014** 0.000 0.010  0.039 -0.036 0.006 
Grand 0.009 0.000 0.010  0.007 -0.043 -0.001 
Thompson 0.010* 0.000 0.007  0.263* 0.232 -0.019 
Gasconade 0.007 0.000 0.008  -0.036 -0.058 0.006 
        
Average 0.008 0.000 0.007  0.061 0.023 0.012 
Stdev 0.006 0.000 0.005  0.125 0.121 0.026 
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Table 4: Trend and Persistence in Annual Mean Flows 

  Trend    Persistence  

 Obs. DT DM  Obs. DT DM 

 Upper Mississippi Basin 

St. Croix 0.017** 0.000 0.011  0.535** 0.473** 0.033 
Jump 0.004 0.000 0.004  0.261* 0.252* 0.068 
Black 0.010* 0.000 0.009  0.179 0.142 0.035 
Maquaketa 0.014** 0.000 0.008  0.366** 0.309* 0.020 
Mississippi 0.022** 0.000 0.012*  0.471** 0.333* 0.022 
Rock 0.020** 0.000 0.013*  0.376** 0.235 0.050 
Sugar 0.016** 0.000 0.010  0.347* 0.261* 0.030 
Pectonica 0.015** 0.000 0.010  0.312* 0.230 0.044 
Cedar 0.021** 0.000 0.014*  0.343* 0.197 -0.013 
Skunk 0.015** 0.000 0.011  0.173 0.087 0.021 
Mississippi 0.024** 0.000 0.014*  0.441** 0.260* 0.004 
Des Moines 0.021** 0.000 0.015*  0.351* 0.204 -0.034 
Raccoon 0.022** 0.000 0.015*  0.296* 0.128 0.002 
Iroquois 0.021** 0.000 0.014*  0.304* 0.149 -0.014 
Kankakee 0.027** 0.000 0.017**  0.394** 0.122 -0.067 
Spoon 0.015** 0.000 0.013*  0.071 -0.040 0.006 
La Moines 0.013** 0.000 0.010  0.169 0.091 0.018 
Meramec 0.011* 0.000 0.007  0.276* 0.238 0.004 
Bourbeuse 0.012* 0.000 0.009  0.185 0.137 -0.021 
Big 0.011* 0.000 0.008  0.267* 0.228 0.030 
Meramec 0.014** 0.000 0.010  0.299* 0.236 0.002 
        
Average 0.016 0.000 0.011  0.306 0.203 0.011 
Stdev 0.005 0.000 0.003  0.111 0.106 0.030 

 Missouri Basin 

Yellowstone 0.017** 0.000 0.013*  0.266* 0.178 -0.077 
Clarks Fork 0.008 0.000 0.007  0.157 0.135 -0.008 
Yellowstone 0.016** 0.000 0.011  0.347* 0.271* -0.038 
Big Sioux 0.023** 0.000 0.014*  0.487** 0.348* -0.045 
North Platte 0.008 0.000 0.006  0.192 0.162 0.007 
Bear 0.003 0.000 0.002  0.020 0.018 -0.002 
Elkhorn 0.024** 0.000 0.013*  0.490** 0.335* -0.136 
Nisnabottna 0.024** 0.000 0.016**  0.280* 0.080 -0.041 
Grand 0.013** 0.000 0.011  0.088 0.008 -0.002 
Thompson 0.013** 0.000 0.011  0.132 0.057 -0.001 
Gasconade 0.012* 0.000 0.008  0.302* 0.260* -0.007 
        
Average 0.015 0.000 0.010  0.251 0.168 -0.032 
Stdev 0.007 0.000 0.004  0.152 0.122 0.043 
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Table 5: Trend and Persistence in 1-Day Low Flows 

  Trend    Persistence  

 Obs. DT DM  Obs. DT DM 

 Upper Mississippi Basin 

St. Croix 0.032** 0.000 0.015* 0.719** 0.514** -0.008 
Jump 0.029** 0.000 0.019** 0.533** 0.268* 0.011 
Black 0.031** 0.000 0.020** 0.458** 0.109 -0.081 
Maquaketa 0.017** 0.000 0.011 0.427** 0.340* 0.058 
Mississippi 0.019** 0.000 0.010 0.495** 0.395** 0.002 
Rock 0.027** 0.000 0.018** 0.347* 0.053 -0.052 
Sugar 0.036** 0.000 0.013* 0.748** 0.446** 0.000 
Pectonica 0.030** 0.000 0.012* 0.633** 0.411** 0.007 
Cedar 0.020** 0.000 0.010 0.489** 0.387** 0.054 
Skunk 0.017** 0.000 0.012 0.365** 0.271* 0.062 
Mississippi 0.024** 0.000 0.014* 0.452** 0.273* 0.032 
Des Moines 0.026** 0.000 0.013* 0.586** 0.426** -0.012 
Raccoon 0.022** 0.000 0.018** 0.172 -0.023 -0.009 
Iroquois 0.023** 0.000 0.018** 0.255* 0.057 -0.003 
Kankakee 0.020** 0.000 0.013* 0.333* 0.191 -0.057 
Spoon 0.015** 0.000 0.012* 0.121 0.032 0.010 
La Moines 0.007 0.000 0.006 0.193 0.169 0.038 
Meramec 0.021** 0.000 0.008 0.634** 0.552** -0.029 
Bourbeuse 0.014** 0.000 0.006 0.476** 0.435** -0.054 
Big 0.020** 0.000 0.011 0.459** 0.357* 0.010 
Meramec 0.017** 0.000 0.008 0.476** 0.402* -0.044 
       
Average 0.022 0.000 0.013 0.446 0.289 -0.003 
Stdev 0.007 

 
0.000 0.004 0.170 0.169 0.040 

 Missouri Basin 

Yellowstone 0.008 0.000 0.004 0.151 0.133 -0.050 
Clarks Fork -0.010 0.000 -0.008 0.404** 0.375** -0.008 
Yellowstone 0.002 0.000 0.001 0.160 0.157 -0.005 
Big Sioux 0.029** 0.000 0.011 0.698** 0.539** -0.086 
North Platte 0.017** 0.000 0.004 0.571** 0.517** -0.030 
Bear 0.022** 0.000 0.014* 0.414** 0.271* -0.041 
Elkhorn 0.028** 0.000 0.008 0.729** 0.603** -0.099 
Nisnabottna 0.026** 0.000 0.017** 0.354* 0.100 -0.034 
Grand 0.015** 0.000 0.011 0.306* 0.233 0.050 
Thompson 0.016** 0.000 0.013* 0.203 0.106 0.000 
Gasconade 0.013** 0.000 0.004 0.569** 0.530** -0.036 
       
Average 0.015 0.000 0.007 0.414 0.324 -0.031 
Stdev 0.012 0.000 0.007 0.205 0.195 0.041 
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Annual 1-Day High Flows 

The flow sequences do not suggest a strong propensity toward either trend or persistence, 

particular in term of residual trend and residual persistence. Of the 32 sequences, half 

have significant trends, but only a third have significant residual trends after de-

Markoving. Eight sequences have significant trends at the 1% level but for only one 

sequence is the trend significant following de-Markoving. De-trending fully accounts for 

trend 

 

Only two sequences have significant persistence, but none of the sequences have 

significant residual persistence after de-trending. De-Markoving fully accounts for 

persistence. 

 

See Figures 3 and 4, below. 

 
Annual Mean Flows 

The flow sequences suggest a strong propensity toward trend and persistence. Of the 32 

sequences, 27 have significant trends, of which 22 have significant trends at the 1 % 

level. Following de-Markoving, only 13 sequences have significant residual trends, of 

which only 2 have significant trends at the 1% level. 

 

Of the 32 sequences, 19 have significant persistence, of which only 7 have significant 

trends at the 1 % level. Following de-trending, 9 sequences have significant trends, but 

only 1 sequence has significant trend at the 1% level. 

 

See Figures 5 and 6, below. 

 

The averages of the measures of trend and persistence of the sequences of annual mean 

flows are about twice as large as the averages of the measures for the sequences of annual 

1-day high flows. The standard deviations of the measures are nearly the same for the 

sequences of annual 1-day high flows and the sequences of annual mean flows. Refer to 

Tables 1 and 2. 
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Annual 1-Day Low Flows 

The flow sequences show a very strong propensity toward trend and persistence. Of the 

32 sequences, 28 have significant trends, all which are significant at the 1% level. 

Following de-Markoving, 15 sequences have significant trends, but only 6 sequences 

have significant residual trends at the 1% level.  

 

Of the 32 sequences, 26 have significant persistence, and of these, 21 have significant 

persistence at the 1 % level. Following de-trending, 20 sequences have significant 

persistence, of which 13 have significant residual persistence. 

 

See Figures 7 and 8, below. 

 

The averages of the measures of trend in the sequences of annual 1-day low flows are 

about the same as the averages of the measures of trend in the sequences of annual mean 

flows, however, the standard deviations of the measures of trend in the annual 1-day low 

flow sequences is greater than that in the annual mean flow sequences. The annual 1-day 

low flow sequences yield somewhat larger averages and standard deviations of the 

measures of persistence. Refer to Tables 4 and 5. 
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Figure 3: Effect of De-Markoving on Trend in 1-Day High Flows Sequences
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Figure 4: Effect of De-Trending on Persistence in 1-Day High Flow Sequences
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Figure 5: Effect of De-Markoving on Trend in Annual Mean Flow Sequences
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Figure 6: Effect of De-Trending on Persistence in Annual Mean Flow Sequences
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Figure 7: Effect of De-Markoving on Trend in 1-Day Low Flow Sequences
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Figure 8: Effect of De-Trending on Persistence in 1-Day Low Flow Sequences
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Other Elements of Flow Spectrum 

Assessment of trend and persistence is summarily given in Appendix E. A numerical 

account of the shift in level of significance of trend and persistence following de-

Markoving and de-trending is also presented in Appendix E, where account includes the 

shifts with respect to the sequences of annual 1-day high flows, annual mean flows and 

annual 1-day low flows. 

 

The geographic distributions of the levels of significant of trends and persistence and the 

levels of significant residual trends and residual persistence are shown in Appendix E. 
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A Comparison of Effects of Trend and Persistence 

Let h  denote the elevation of water in a basin corresponding to a flood flow of 

magnitude Q , and let h∗  denote a specific value of elevation. Define 

 

x =
1; if h ≥ h∗

0;otherwise
 
 
  

 (9) 

 

where x = 1  denotes a “flood” and x = 0  denotes “no flood”. In addition to binomial 

outcomes, assume that floods are identically and independently distributed over time, 

whereby the flow process is Bernoullian. The probabilities of the outcomes are 

 

Prob x = 1[ ] = p  (10) 

 
Prob x = 0[ ] = 1 − p

= q
 (11) 

 

The number of floods, y  , that occur in a period of n  years may vary from 0  to n  and is 

distributed with expectation 

 

E y[ ]= p
t=1

n
∑

= np
 (12) 

 

and variance 

 

V y[ ]= pq
t =1

n
∑

= npq
 (13) 

 

See e.g. Johnson and Kotz (1969). 
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Trend 

Assume that the probability of a flood changes over time due to various factors, notably 

due to changes in climate or changes in land use. Assume further that floods are 

temporally independent, i.e the flow process in non-Bernoullian – floods are non-

identically and independently distributed over time. In year t , where   t = 1, 2,K,n , the 

probability of a flood is pt , whereby qt = 1 − pt . In general,  p1 ≠ p2 ≠L≠ pn .  

 

The number of floods in a period of n  years is distributed with expectation 

 

′ E y[ ]= E xt
t=1

n
∑

 
  

 
  

= pt
t=1

n
∑

= np 

 (14) 

 

and variance 

 

′ V y[ ]= pt qt
t=1

n
∑

= pt
t=1

n
∑ − pt

2

t=1

n
∑

= np − pt
2

t=1

n
∑

 (15) 

 

If pt = p ∀t , then Eqs. (14) and (15) reduce to Eqs. (12) and 13). 

 

The variance of the pi , V p[ ], is given by 

 

V p[ ]= pt − p ( )2 n
t =1

n
∑

= pt
2 n

t =1

n
∑ − pt

t =1

n
∑

 
  

 
  

2

n2

= pt
2 n

t =1

n
∑ − p 2

 (16) 

 

whereby Eq. (15) may be expressed as 
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′ V y[ ]= np − n V p[ ]+ p 2( )
= np − np 2 − nV p[ ]
= np q − nV p[ ]
= V y[ ]− nV p[ ]

 (17) 

 

where q = 1 − p . If pt = p ∀t , Eq.(17) reduces to Eq. (13). See e.g. Kenny and 

Keeping (1956) and Uspensky (1937). 

 

The expected number of floods within a period of n  years is the same whether the pt  

vary with t  or not. From Eq. (17), it is noted that ′ V y[ ]< V y[ ] regardless of how the pt  

vary with t . The variability of flooding within an n  year period is less if the pt  vary with 

t  than if pt  is a constant ∀t . In general, the manner in which the pt  vary with t  effects 

the degree to which ′ V y[ ]< V y[ ]. If the slope of an upward linear trend in the pt  is equal 

to the absolute value of the slope of a downward linear trend, then the degrees to which 

′ V y[ ]< V y[ ] are the same  

 
Persistence 

Consider the non-Bernoullian flood process where floods are identically and non-

independently distributed over time. It is assumed that temporal dependence, 

persistence, has the following Markovian structure formulated by Thomas (personal 

communication: 1957). 

 

Eqs. (10) and (11) hold. The conditional, i.e. transition probabilities, the probabilities 

that particular outcomes will occur in one year given that a certain outcome occurred in 

the previous year are noted as 

 
Prob xt = 1 xt−1 = 1[ ]= p 11( )= a + b( )

Prob xt = 0 xt−1 = 1[ ]= p 0 1( )= 1 − a + b( )

Prob xt = 1 xt−1 = 0[ ]= p 10( )= b

Prob xt = 0 xt−1 = 0[ ]= p 0 0( )= 1 − b

 

 

 
 
 

 

 
 
 
 

 (18) 
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The joint probabilities, i.e. the probabilities that particular outcomes will be manifest in 

consecutive years are 

 
p x t−1 = 1,xt = 1( )= p 1,1( ) = p 1 1( )p 1( ) = a + b( )p

p x t−1 = 1,xt = 0( )= p 0,1( ) = p 0 1( )p 1( ) = 1− a + b( )[ ]p
p x t−1 = 0,xt = 1( )= p 1,0( ) = p 1 0( )p 1( ) = bq

p x t−1 = 0,xt = 0( )= p 0,0( ) = p 0 0( )p 1( ) = 1 − b( )q

 

 

 
  

 

 
 
 

 (19) 

 

From the calculus of probability 

 
p 0 1( )p 1( ) = p 10( )p 0( ) (20) 

 

whereby 

 

b = 1− a( )p  (21) 

 

It follows that ∀t  

 
E xt[ ]= p  (22) 

 
E xt

2[ ]= p  (23) 

 

and therefore 

 
V xt[ ]= pq  (24) 

 

Furthermore, ∀t  

 
E xt xt−1[ ]= a + b( )p  (25) 
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and therefore 

 
Cov xt , xt−1[ ]= E xt xτ[ ]− E xt[ ]E xτ[ ]

= a + b( )p − p2
 (26) 

 

whereby, the first order autocorrelation, ρ1 , is 

 

ρ1 =
Cov xt , xt−1[ ]

V xt[ ]{ }1 2
V xt−1[ ]{ }1 2

=
apq
pq

= a

 (27) 

 

It can be shown that  

 

ρk = ak  (28) 

 

further illustrating the Markovian structure of the non-Bernoullian process having the 

transition probabilities defined by Eq. (18). 

 

The number of floods within a period of n  years is distributed with expectation 

 

′ ′ E y[ ]= E xt
t=1

n
∑

 
  

 
  

= E xt[ ]
t=1

n
∑

= np

 (29) 

 

and variance 

 

′ ′ V y[ ]= E xt
t =1

n
∑ − np 

  
 
  

2

= E xt
2

t=1

n
∑

 
  

 
  − 2np xt

t=1

n
∑ + n 2p2 

  
 
  

= npq + 2 E xt xτ[ ]
τ=t +1

n
∑

t=1

n−1
∑ − n n − 1( )p2

 (30) 
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The term E xt xτ[ ] may be expressed as 

 
E xt xτ[ ]= aτ −t pq + p2  (31) 

 

whereby 

 

2 E xt xτ[ ]
τ= t+1

n
∑

t=1

n−1
∑ = 2 aτ− t pq + p2[ ]

τ=t +1

n
∑

t=1

n−1
∑

= 2 npq at

t=1

n −1
∑ − pqa tat−1

t=1

n−1
∑ + p 2

τ= t+1

n
∑

t=1

n−1
∑{ }

= 2apq
n 1 − a( )− 1 − an( )

n 1 − a( )2

 
 
 

  

 
 
 

  
+ n n − 1( )p2

 (32) 

 

and therefore, Eq. (30) may be expressed as 

 

′ ′ V y[ ]= npq + 2apq
n 1 − a( )− 1 − an( )

1 − a( )2

 
 
 

  

 
 
 

  

= V y[ ] 1+ 2a
n 1− a( )− 1− an( )

n 1− a( )2

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

 (33) 

 

The expected number of floods in the non-Bernoullian case marked by temporal 

dependence, is the same as in the strictly Bernoullian case or in the non-Bernoullian case 

marked by trend. It is readily noted that 

 

′ ′ V y[ ]
> V y[ ]; if a > 0

= V y[ ]; if a = 0
< V y[ ]; if a < 0

 

 
  

 
 
 

 (34) 

 

Trend vs. Persistence 

Trend and persistence have no effect on the expected number of floods above a threshold 

level of elevation. The effects of Markovian persistence with a > 0  and of trend on the 

variability of the number of floods above a threshold level of elevation are 
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counter to one another – one tending to mitigate the effect of the other. The net effect of 

trend and Markovian persistence with a > 0  on the variability of the number of floods 

above a threshold level of elevation may be negligible if the levels of trend and persistence 

are low. Thus, variability in the number of floods above a threshold level of elevation in 

keeping with a Bernoullian structure of floods does not necessarily imply the absence of 

trend and persistence. 

 

The effect of Markovian persistence with a < 0  compounds the effect of trend – both 

reduce the variability of the number of floods above a threshold level of elevation without 

either effecting the expected number of floods. Thus, variability in the number of floods 

above a threshold level of elevation smaller than expected via a Bernoullian process is not 

necessarily the consequence of trend alone or persistence alone.  

 

The following examples illustrates the effects of trend and persistence on the variability in 

the number of floods above a threshold level of elevation.  

 
Bernoullian Case 

In the Bernoullian case, floods are identically and independently distributed – the 

probability that a flood will exceed a threshold elevation does not vary from one year to 

the next, and the fact that the threshold had or had not been  exceeded in one year has 

no bearing on whether the threshold will or will not be exceeded in any subsequent year. 

The expected values and variances of the distribution of the number of floods exceeding 

the threshold in a period of n = 5,10,25,50,100  given the exceedence probabilities 

p = 0.04,0.02,0.01 are shown in Table 6. The corresponding probabilities of non-

exceedence are q = 0.96,0.98,0.99 . The specific exceedence probabilities translate as the 

T = 25,50,100  year floods.  
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Non-Bernoullian Case Marked by Trend 

In the non-Bernoullian case marked by trend, floods are non-identically and 

independently distributed – the probability that a flood will exceed a threshold elevation 

varies from one year to the next, but the fact that the threshold had or had not been 

exceeded in one year has no bearing on whether the threshold will or will not be 

exceeded in a subsequent year. 

 

For   t = 1,K,n ,  

 
t = t n

t=1

n
∑

= n + 1( ) 2
 (35) 

 

Given p1  and pn ,  

 
p = pn + p1( ) 2  (36) 

 
b = pn − p1( ) n  (37) 

 

whereby 

 
pt = p + b t − t ( ) (38) 

 

 

Table 6: Expected Value and Variance of the Distribution of the 
Number of Floods exceeding a Threshold Elevation  – 
Bernoulli Process 

n p=0.04 p=0.02 p=0.01 

 E y[ ] V y[ ] E y[ ] V y[ ] E y[ ] V y[ ] 

5 0.20 0.1920 0.10 0.0980 0.05 0.0495 
10 0.40 0.3840 0.20 0.1960 0.10 0.0990 
25 1 0.9600 0.50 0.4900 0.25 0.2475 
50 2 1.9200 1 0.9800 0.50 0.4950 

100 4 3.8400 2 1.9600 1 0.9900 
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The parameter b  is the slope of the linear trend in the pt . The effect of a negative linear 

trend in the pt  on the expected value and variance of the number of times floods exceed 

the threshold elevation in a period of n  years is the same as in the case of a positive trend 

where the absolute values of the positive and negative slopes are equal. 

 

The values of t , p  and b  for specific values of n , p1  and pn  are given in Table 7. 

 

 

The expected values and variances of the distribution of the number of floods exceeding 

the threshold in a period of n = 5,10,25,50,100  for the mean exceedence probabilities 

p = 0.04,0.02,0.01  are shown in Table 8. 

 

 

Table 7: Parameters Describing the Variation of pt  
with t  

n 5  10  25  50  100  

 p1 = 0.005, pn = 0.075  

t  3 5.5 13 25.5 50.5 
p  0.04 0.04 0.04 0.04 0.04 
b  0.0175 0.0078 0.0029 0.0014 0.007 

 p1 = 0.005, pn = 0.035  

t  3 5.5 13 25.5 50.5 
p  0.02 0.02 0.02 0.02 0.02 
b  0.0075 0.0033 0.0012 0.0006 0.0003 

 p1 = 0.005, pn = 0.015  

t  3 5.5 13 25.5 50.5 
p  0.01 0.01 0.01 0.01 0.01 
b  0.0025 0.0011 0.0004 0.0002 0.0001 

Table 8: Expected Value and Variance of the Distribution of the 
Number of Floods exceeding a Threshold Elevation  as 
Affected by Trend 

n  p = 0.04  p = 0.02  p = 0.01 

 ′ E y[ ] ′ V y[ ] ′ E y[ ] ′ V y[ ] ′ E y[ ] ′ V y[ ] 

5 0.2 0.1889 0.1 0.0974 0.05 0.0494 
10 0.4 0.3790 0.2 0.1951 0.1 0.0989 
25 1 0.9489 0.5 0.4880 0.25 0.2473 
50 2 1.8988 1 0.9761 0.5 0.4946 

100 4 3.7976 2 1.9523 1 0.9891 
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From Eqs. (12) and (14), it is noted that the expected value of the distribution of the 

number of floods that exceed the threshold elevation within a period of n  years in the 

non-Bernoullian case marked by trend is the same as that in the Bernoullian case – 

′ E y[ ]= E y[ ]. For a given value of n , E y[ ] and ′ E y[ ] decrease as p = p  decreases. For a 

given value of p = p , E y[ ] and ′ E y[ ] increase as n  increases. Refer to Tables 7 and 8. 

 

From Eqs. (13) and (17), it is noted that the variance of the distribution of the number 

of floods that exceed the threshold elevation within a period of n  years in the non-

Bernoullian case marked by trend is less than that in the Bernoullian case – ′ V y[ ]< V y[ ]. 

For a given value of n , V y[ ] and ′ V y[ ] decrease as p = p  decreases. For a given value of 

p = p , V y[ ] and ′ V y[ ]  increase as n  increases. Moreover, for a given value of n , the 

difference between V y[ ] and ′ V y[ ] decreases at an increasing rate as p = p  decreases. In 

the case where p = p  is very small, the effect of trend on the variance of the distribution 

of the number of floods that exceed the threshold elevation within a period of n  years is 

small. Refer to Tables 7 and 8. 

 
Non-Bernoullian Case Marked by Markovian Persistence 

In the non-Bernoullian case marked by persistence, floods are identically and non-

independently distributed – the probability that a flood will exceed a threshold elevation 

does not vary from one year to the next, but the fact that the threshold had or had not 

been exceeded in one year has a bearing on whether the threshold will or will not be 

exceeded in any subsequent year. 

 

For specific values of n , p  and a , the expected value and variance of the distribution of 

the number of floods that exceed a threshold elevation are given in Tables 9a and 9b. 
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From Tables 9a and 9b, it readily seen that persistence effects an increase (decrease) in 

the variance of the distribution of the number of floods that exceed the threshold 

elevation within a period of n  years if a > 0  (a < 0 ). 

 

Table 9a: Expected Value and Variance of the Distribution of the 
Number of Floods exceeding a Threshold Elevation  as 
Affected by Persistence – a = 0.1 

n p=0.04 p=0.02 p=0.01 

 ′ ′ E y[ ] ′ ′ V y[ ] ′ ′ E y[ ] ′ ′ V y[ ] ′ ′ E y[ ] ′ ′ V y[ ] 

5 0.2 0.2252 0.1 0.1149 0.05 0.0581 
10 0.4 0.4599 0.2 0.2347 0.1 0.1186 
25 1 1.1639 0.5 0.5940 0.25 0.3001 
50 2 2.3372 1 1.1929 0.5 0.6026 

100 4 4.6839 2 2.3907 1 1.2076 

Table 9b: Expected Value and Variance of the Distribution of the 
Number of Floods exceeding a Threshold Elevation  as 
Affected by Persistence – a = −0.1 

n p=0.04 p=0.02 p=0.01 

 ′ ′ E y[ ] ′ ′ V y[ ] ′ ′ E y[ ] ′ ′ V y[ ] ′ ′ E y[ ] ′ ′ V y[ ] 

5 0.2 0.1634 0.1 0.0834 0.05 0.0421 
10 0.4 0.3205 0.2 0.1636 0.1 0.0826 
25 1 0.7918 0.5 0.4041 0.25 0.2041 
50 2 1.5773 1 0.8051 0.5 0.4066 

100 4 3.1482 2 1.6069 1 0.8116 
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Right and Left Tails of Flood Distributions  
Overview 

In conducting flood frequency analyses, Federal agencies are guided by Bulletin 17-B 

The Bulletin calls for fitting the Log-Pearson Type III distributions to ordered sequences 

of observed flood flows, unless there are strong grounds for fitting another distribution. 

The Log-Pearson Type III distribution presumes that the logs of the observed flows are 

distributed as Pearson Type III. The Pearson Type III distribution may be positively or 

negatively skewed. As skewness approaches zero, the Pearson Type III distribution 

approaches the Normal distribution. Thus, the Log-Normal distribution is a special case 

of the Log-Pearson Type III distribution.  

 

The logs of observed flood flows tend to yield negative values of skewness, whereby, the 

Normal distribution provides a relatively poor fit to the logs of the flows, and 

consequently the Log-Normal distribution provides a relatively poor fit to the flows. The 

Pearson Type III distribution in log space and the Log-Pearson Type III distribution in 

real space provide better fits. It is noted that the Normal distribution is defined by two 

parameters, whereas the Pearson type III distribution is defined by two or at most three 

parameters, one of which measures the skewness of the distribution.  

 

Evaluation of the goodness of fit of a particular distribution is generally in reference to 

the overall fit of the distribution, i.e. the fit over the full range of an ordered set of flows. 

An analytically defined probability distribution may be fitted to a set of observations by 

one of several statistical methods. In hydrology, the most common procedures are those 

of moments, maximum likelihood, and L-moments. These methods are based on 

relations between the parameters of the distribution to be fitted and specific statistical 

averages derived from integration over the range of the distribution. For example, in 

fitting a Normal distribution, the integration is over the interval −∞,∞( ). In fitting a 

Log-Normal, the interval of integration is m,∞( ), where the lower bound m ≥ 0  is 

physically interpreted as base flow. Bulletin 17-B is based on the method of moments.  

 

The relative poor fit of the Normal distribution in log space, judged in reference to the 

overall fit, does not preclude the right tail of the Normal distribution, or of some other 
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distribution, providing a relatively better fit to the distribution of the larger of the 

observed flows than the right tail of the Pearson Type III distribution. It is the right tail 

of the distribution that matters in flood frequency studies. In drought studies, the left tail 

matters. Few studies consider fitting one tail independently of the other.  

 

To improve the overall fit of the Log-Pearson Type III distribution, attention is given in 

Bulletin 17-B to estimating a regional coefficient of skewness applicable to the site at 

issue. The estimate of skewness is regarded as a principal source of uncertainty in 

evaluating flood risks at specific sites. The extent to which the left and right tails of the 

presumed distribution of floods contribute to the skewness of the distribution is open to 

investigation. Seeking to fit the right tail independently of the left tail affords a basis for 

assessing the contributions of the tails to the skewness of the distribution. If only the 

right tail is to be fitted, then the estimate of skewness of the complete distribution, i.e. 

the distribution extending over both tails may or may not be relevant. The degree 

relevance is an open question. 

 

The following discussions of fitting the right tail of a distributions to an ordered set of 

flows are in reference to two cases. The first case considers the regional vector derived 

from the logs of the flows at specific sites within a region, and the second case considers 

vector formed by the logs of the elements of the regional vector derived from the flows at 

the specific sites within the region. For the first case, the distribution of the elements of 

the regional vector is said to be in log space, whereas, for the second case, the distribution 

of the logs of the elements of the regional vector is said to be in quasi-log space. 

 

For the purpose of this study, the left tail extends over flows less than the median, and 

the right tail extends over flows equal to or greater than the median. The median flow is 

the T = 2 − year   flow, i.e. the flow having an exceedence probability of 1 − P = 0.5 , 

where P ≡ Pr ob X < x( ). Further study of fitting the right tail independently of the left 

tail perhaps should consider a three part partition of a distribution to include a central 

part. With such a partition, the right tail of a distribution would extend over all flows 

greater than the T > 2 − year . flood. 
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Left and Right Tails 

From Appendix B, it is noted that in log space, the right tails of the distributions of the 

elements of the high end of the flow spectrum, i.e. the k − day  high flows, tend to vary 

linearly over the probability scale. The linear tendency suggests that the right tails accord 

reasonably well with the Normal distribution in log space, and consequently with the 

Log Normal distribution in real space. In log space, the left tails of the distributions 

reflect varying degrees of stretchiness relative to the left tail of the Normal distribution.  

 

The following terminology is introduced. If the right tail of a regionalized distribution is 

well approximated by the right tail of a Normal distribution, the right tail of a 

regionalized distribution is said to be right tail Normal. If the left tail of the regionalized 

distribution lies below (above) the left tail of the Normal distribution, the left tail of the 

regionalized distribution is said to be left tail super- (sub-) Normal. A left tail that is 

super- (sub-) Normal is in effect a tail that is stretched (compressed) relative to a Normal 

left tail. If in fact, the left tail of a regionalized distribution is left tail Normal, then the 

right tail of the regionalized distribution is said to be sub-  (super-) Normal if the right 

tail of the regionalized distribution lies below (above) the right tail of a Normal 

distribution. 

 

For exploratory purposes, the Normal distribution was fitted to the right tail of the 

regionalized distributions of k − day  high flows as follows. The Normal distribution is 

defined by two parameters, namely the mean and standard deviation. Given that the 

mean and median are the same for the Normal distribution, the mean was set equal to 

the median, which for the regionalized distribution in log space is equal to 1 and in 

quasi-log space is equal to 0. The standard deviation of the Normal distribution is equal 

to the absolute difference in the values of the normalized logs of flow for exceedence 

probabilities of 0.5  and 0.84 . The probability 0.5  marks the median of the distribution, 

and the probability 0.84  marks one of the two inflection points of the  Normal 

distribution. The other inflection point is marked by the probability 0.16 . 

 

Let   xi: i = 1,K, n{ } denote a regional vector in either log or quasi-log space. By the 

manner –  the median-median method –  in which the vector was obtained, the vector 
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is an ordered set of values, from smallest, x1 , to largest, xn . The probability distribution 

of the elements of the regional vector, F x( ) = Pr ob x < X( ) is defined in terms of the 

Weibull plotting position — 

 
F xi( )= i n + 1( ) (39) 

 

Let F y( ) denote the Normal cumulative distribution function: y ~ N µ ,σ( ), where µ , 

mean=median, and σ , standard deviation, are given by the procedure outlined above. 

The Normal variate yi  corresponding to xi  is that value for which 

 
F yi( )= F xi( ) (40) 

 

The right tail of the Normal distribution is given by F yi( ) for  i = ν,K,n , where 

 

ν =

n + 1
2

; n odd

n
2

; n even

 

 
  

 
 
 

 (41) 

 

Normal distributions fitted to the right tails of regionalized distributions in log space of 

the 1 − day  high flows for the Upper Mississippi and Missouri basins are shown in 

Figures 9 and 10, respectively. 
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Figure 9: Upper Mississippi Basin - Regionalized Distribution in Log Space of Annual 1-Day 
                High Flows with Right Tail Fitted with a Normal Distribution (µ = 1, σ = 0.057)

σ
µ ≡ Mean = Median
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Figure 10: Missouri Basin - Regionalized Distribution in Log Space of  Annual 1-Day 
               High Flows with Right Tail Fitted with a Normal Distribution (µ = 1, σ = 0.053)

σ µ ≡ Mean = Median
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From Figures 9 and 10, it is seen that 1) the Normal distribution provides a reasonably 

good fit to the right tail of the observed regional distribution in log space of the 

k = 1 − Day  annual high flows. The left tail of the observed distribution is sub-Normal, 

and the observed distribution is negatively skewed. These features of the observed 

regional distribution in log space of the k = 1 − Day  annual high flows relative to the 

Normal distribution are displayed by the observed regional distributions in log space of 

the  k − Day  annual high flows for k > 1, as well as by the observed regional distributions 

in log space of the annual mean flows. See Appendix F. 

 

The regional distributions in quasi log space of the k = 1 − Day  annual high flows are 

shown in Figure 11 for the Upper Mississippi basin and in Figure 12 for the Missouri 

basin. 
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Figure 11: Upper Mississippi Basin –  Regionalized Distrinution in Quasi-Log Space of Annual 
                1-Day High Flows with Right Tail Fitted with a Normal Distribution (µ = 0, σ = 0.236

σ
µ ≡ Mean =Median

 



Prepared  by  45 
Nicholas C. Matalas 709 Glyndon St., S.E.  
Hydrologist Vienna, VA 22180 1/22/01 

Prepared as Subcontractor to Under Contract to Contract 
Planning & Management  US Army Corps of Engineers Climate Variability and  
Consultants, Ltd. Institute of Water Resources Change and the Uncertainty of 
Carbondale, IL 62903 Ft. Belvoir, VA 22315 Flood Frequency Estimates 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

.01 .1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

Left Tail of Normal Distribution

Right Tail of Normal Distribution

Observed Regional Distribution (γ = -0.278)
Lo

gs
 o

g 
N

or
m

al
iz

ed
 F

lo
w

s

Percent

σ
µ ≡ Mean = Median

Figure 12: Missouri Basin – Regionalized Distribution in Quasi-Log Space of 1-Day 
              Annual High Flow with Right Tail Fitted with a Normal Distribution (µ = 0, σ = 0.218)

 
 

The features of the regional distribution of the annual k = 1 − Day  high flows displayed 

in log space are displayed in quasi-log space. These features are also displayed in quasi-log 

space by the annual k > 1− Day  high flows and by the annual mean flows. See Appendix 

G. 

 

A summary account of the Normal distributions fitted to the right tails of the 

distributions of the regional vectors in log space and in quasi-log space is given in 

Table 10. 
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Over the high end of the flow spectrum, the Normal distribution provides a better fit of 

the right tails of the observed regional distributions for the Upper Mississippi basin than 

for the Missouri basin. It is noted that 21 sites form the region for the Upper Mississippi 

basin, whereas 11 sites form the region for the Missouri basin. The Missouri region is 

more heterogeneous in terms of climate than the Upper Mississippi region. Whether 

these attributes of the two regions have a bearing on the goodness of fit of the right tails  

of the observed regional distributions in log space and in quasi-log space by Normal 

distributions is an open question.  

 

 

For further discussion of the right and left tails of flood distributions see Appendix H. 

Table 10: Standard Deviations of Normal Distributions Fitted to Right Tails 
of Regional Vectors 

k Upper Mississippi Basin Missouri Basin 

 Log Space Quasi-Log 
Space 

Log Space Quasi-Log 
Space 

1-Day 0.057 0.236 0.053 0.218 
3-Day 0.057 0.224 0.052 0.228 
7-Day 0.057 0.210 0.053 0.221 

14-Day 0.054 0.210 0.057 0.221 
30-Day 0.054 0.207 0.063 0.227 
60-Day 0.053 0.182 0.083 0.284 
90-Day 0.056 0.174 0.081 0.274 

180-Day 0.053 0.157 0.079 0.260 
AM 0.052 0.172 0.083 0.249 
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Comparison of Pearson Type III and Right-Tail Normal Distributions 
– Annual 1-Day High Flows 

In the above discussions, it was shown that in log space and in quasi-log space the 

Normal distribution provides a good fit to the right tails of regionalized distributions 

spanning the “high end” of the flow spectrum, that is for the regionalized sequences of 

k − day  high flows, where 1 ≤ k ≤ 365 . The two spaces are in reference to two cases. The 

first case refers the regional vector derived from the logs of the flows at specific sites 

within a region, and the second case refers vectors formed by the logs of the elements of 

the regional vector derived from the flows at the specific sites within the region. For the 

first case, the distribution of the elements of the regional vector is said to be in log space, 

whereas, for the second case, the distribution of the logs of the elements of the regional 

vector is said to be in quasi-log space. 

 

In flood studies, it is the right tail of the probability distribution that matters. By an 

overall fit of a distribution, i.e. the fit over all the observations, the left tail wags the right 

tail, so to speak. The motivation for a right tail fit is to diminish, if not eliminate the 

impact of the left tail on the right tail through the overall fitting procedure. If the smaller 

floods are censored, than the distribution is a truncated distribution with appropriate 

adjustment in the exceedence probabilities of the uncensored floods. The methodology of 

right tail fitting of the Normal distribution outlined above does not require any 

censoring and thus no adjustment in the exceedence probabilities is needed. 

 

How well the right tail fit of the Normal distribution compares with the overall fit of the 

Pearson Type III is examined. The comparison carries over to real space in terms of the 

right tail fit of the Log-Normal Distribution relative to the overall fit of the Log-Pearson 

Type III distribution.  

 

The comparison of the Right-Tail Normal with the overall Pearson Type III is made in 

terms of the distributions of the elements of the regional vectors in log space and in 

quasi-log space, and in terms of the distributions of the logs of the annual 1-day high 

flows at each of the 32 sites, where 21 sites are in the Upper Mississippi basin and the 

other 11 sites are in the Missouri basin.  
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The sequences of annual 1-day high flows at each of the 32 sites in the two regions span 

the 70-year period, 1929-1998. This period is the longest concurrent period of the 

sequences. The comparison of the Right-Tail Normal distribution with the overall 

Pearson Type III distribution is in terms of the 50-year flood, i.e. the 50-year, annual 1-

day high flow. The 50-year flow has an exceedence probability of P = 1 50( )= 0.02 .  

 
Rationale for Right-Tail Distribution 

Previously it was noted that in the case of an overall fit of a distribution, the fit of the 

right tail is affected by the fit of the left tail, and conversely. In flood frequency analysis it 

is the left tail that matters, and therefore a good fit of the right at the expense of the 

goodness of fit of the left tail merits attention.  

 

Another reason for improving the fit of the right tail at the expense of the left tail is as 

follows. In a given locale, assume that the damages, D x( ), that would be incurred from a 

flood of magnitude x  are defined as 

 

D x( )
= 0 if m ≤ x ≤ x∗

> 0 if x > x ∗

 
 
 

  
 (42) 

 

where x∗  denotes the threshold flood, a value below which no damages are incurred, and 

m  denotes the lower bound on flood magnitude. The expected value of damages is given 

by 

 

E D x( )[ ]= D x( )
m

x∗

∫ f x( )dx + D x( ) f x( )dx
x∗

∞

∫

= 0 + D x( ) f x( )dx
x∗

∞

∫

= D x( )f x( )dx
x∗

∞

∫

 (43) 

 

where f x( ) denotes the probability density function of floods which is not known. A 

specific density function is accepted g x( ) as the density function that best represents 

f x( ). Using g x( ), the estimate of the expected value of the damages is 
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ˆ E D x( )[ ]= D x( )g x( )dx

x∗

∞

∫  (44) 

 

No matter what density function is used to represent f x( ), floods of magnitude less than 

the threshold value contribute nothing to the estimated expected value of damages. 

 

In the above discussions, empirical evidence was offered that in log space, the Right-Tail 

Normal distribution provides better estimates of the T − year  flood than does the 

Pearson Type III distribution for T > 2 , i.e. for floods greater than the median flood. If 

in log space the Right-Tail Normal distribution out-performs the Pearson Type II 

distribution, then in real space, the Log-Normal distribution will out-perform the Log-

Pearson Type III distribution. It is noted that the left tail of the Right-Tail Normal 

distribution does not provide as good a fit to the observations as does the left tail of  the 

Pearson Type III distribution.  

 

Let g x( ) be the Pearson Type III density function, and let h x( ) be the Right-Tail 

Normal density function. Assume that  x∗ > ˜ x , i.e. the threshold flood exceeds the 

median flood. No matter how poorly the left tail of the Right-Tail Normal distribution 

fits the observations in comparison to the goodness of fit of the Pearson Type III 

distribution, the left tail of neither distribution has any effect on the estimated expected 

value of damages. The difference between estimates of the expected value of damages 

conditioned on g x( ) and h x( ) is small, thought the Right-Tail Normal distribution 

better fits the observed floods greater than the median flood than does the Pearson Type 

III distribution.  
 

Flow Sequences 

Of the 32 sequences of annual 1-day high flows spanning the 70-year period, 1929-

1998, 21 are in the Upper Mississippi basin and 11 are in the Missouri basin. The 

geographic locations of the sequences along with statistical descriptors of the sequences in 

log space, namely, the mean, µ , the standard deviation, σ , and the coefficient of 

skewness, γ , are given in Table 11. Because the matter of differences between sampling 
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and population values of statistical descriptors is not dealt with, the sample statistics are 

denoted in terms of the Greek letters that are generally reserved for the corresponding 

population statistics. 

 

 

Table 11:  Location and Statistical Description of Sequences of Annual 
1-Day High Flows 

Stream Locale State Flow Descriptors 

   µ  σ  γ  

Upper Mississippi Basin 

St. Croix St. Croix WI 4.374 0.185 -0.638 
Jump Sheldon WI 3.870 0.233 -0.062 
Black Neillsville WI 4.018 0.251 -0.644 
Maquaketa Maquaketa IA 4.045 0.277 -0.147 
Mississippi Clinton IA 5.126 0.165 -0.608 
Rock Afton WI 3.755 0.192 -0.598 
Sugar Broadhead WI 3.428 0.285 -0.093 
Pecatonica Freeport IL 3.706 0.241 0.144 
Cedar Cedar Rapids IA 4.335 0.320 -0.640 
Skunk Augusta IA 4.271 0.268 -1.013 
Mississippi Keokuk IA 5.256 0.164 -0.717 
De Moines Stratford IA 4.132 0.315 -0.741 
Raccoon Van Meter IA 4.092 0.304 -0.391 
Iroquois Chebanse IL 4.091 0.208 -0.548 
Kankakee Momence IL 3.806 0.154 -0.583 
Spoon Seville IL 4.067 0.226 -0.272 
La Moines Ripely IL 3.955 0.288 -0.871 
Meramec Steeville MO 4.030 0.354 -0.940 
Bourbeuse Union MO 4.108 0.245 0.024 
Big Byrnesville MO 4.154 0.288 -0.552 
Meramec Eureka MO 4.550 0.279 -0.378 

Average   4.151 0.250 -0.489 
Std. Deviation   0.424 0.056 0.319 

Missouri Basin 

Yellowstone Corwin Springs MT 4.203 0.118 -0.307 
Clarks Fork Belfry MT 3.844 0.104 -0.046 
Yellowstone Billings MT 4.583 0.135 -0.409 
Big Sioux Akron IA 3.949 0.434 -0.318 
North Platte Northgate CO 3.391 0.220 -0.628 
Bear Morrison CO 2.367 0.341 0.437 
Elkhorn Waterloo NE 4.063 0.351 -0.022 
Nishabottna Hamburg IA 4.096 0.324 -1.273 
Grand Gallatin MO 4.337 0.261 -0.479 
Thompson Trenton MO 4.247 0.291 -0.285 
Gasconade Jerome MO 4.446 0.295 -0.477 

Average   3.957 0.261 -0.346 
Std. Deviation   0.617 0.106 0.423 
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All the coefficients of skewness are negative except three, two in the Upper Mississippi 

basin (Pecatonica at Freeport, IL and Bourbeuse at Union, MO), and one in the 

Missouri basin (Bear at Morrison, CO). The negative skews range from -1.013 to 0.024 

with an average of -0.434 in the Upper Mississippi basin, and from -1.273 to 0.434 with 

an average of -0.489 in the Missouri Basin. 

 

On a regional basis, the statistical descriptors of the distributions of the annual 1-Day 

high flows in log space and in quasi-log space are given in Table 12. 

 

 

It is noted from Table 11, that the values of the coefficients of skewness in log space 

exceed the values in quasi-log space. The values of the standard deviation in log space are 

an order of magnitude smaller than the values in quasi-log space. In log space the mean is 

nearly equal to the median of unit value, whereas in quasi-log space, the mean is nearly 

equal to the median of zero value. It should be noted, that the regionalization process 

that was used follows the median-median procedure, where in log space, the median = 1 

for the regional sequence, and in quasi-log space, the median = 0 for the regional 

sequence.  
 

Pearson Type III Distribution 

The fitting procedure outlined in Bulletin 17- B for the Pearson Type III distribution is 

basically the method of moments. In lieu of the at-site estimate of the skewness, a 

regional estimate of skewness is used in fitting the distribution to the observed 

Table 12: Ststistical Descriptors of Regional 
Sequences of Annual 1-Day High Flows 

 Statistical Descriptors 

 µ  σ  γ  

Upper Mississippi Basin 

Log Space 1 0.060 -0.368 
Quasi-Log Space 0 0.244 -0.234 

Missouri Basin 

Log Space 1 0.065 -0.408 
Quasi-Log Space 0 0.262 -0.278 
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distribution where the ordered floods are assigned exceedence probabilities defined by the 

Weibull plotting position. For a sequence of n  observations ordered from smallest to 

largest, the i − th  observation, where  i = 1,K,n , is assigned the Weibull plotting position, 

i n + 1( ). The associated exceedence probability is given by  

 
P = 1− i n + 1( )

= n + 1 − i( ) n + 1( )
 (45) 

 

In the following discussions, the fitting of the Pearson Type III distribution is based on 

the at-site estimates or on the regionalized estimates of skewness. No account is taken of 

regionalizing the at-site estimates of skewness or of regionalizing the regional estimates of 

skewness in terms of Bulletin 17-B. The regionalized estimates of skewness are, in effect, 

regional estimates of skewness.  

 

The Pearson Type III distribution is defined as 

 

f x( ) =
1

b Γ a( )
x − m

b
 
  

 
  

a −1

exp −
x − m

b
 
  

 
  

 

 
 

 

 
  (46) 

 

If b  is positive, then x  is positively skewed, where m ≤ x ≤ ∞ . If b  is negative, then x  is 

negatively skewed, where −∞ ≤ x ≤ m .  

 

The κ − th  moment about the origin of x  is  

 

E x κ[ ]=
x κ

m

∞

∫ f x( )dx; if a > 0

x κ

−∞

m

∫ f x( )dx; if a < 0

 

 
  

 
 
 

 (47) 
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It follows that 

 

µ = m + ab

σ = b a1 2

γ = 2b
b a1 2

 

 

 
 
 

 

 
 
 

 (48) 

 

whereby, 

 
m = µ − σ γ

a = 4 γ 2

b = σγ 2

 

 
 

 
 
 

 (49) 

 

Let   xi: i = 1,K, n{ } denote an arbitrary sequence. The values of µ , σ  and γ , actually the 

estimates of the values µ , σ  and γ , are given by 

 

µ = x i n
i=1

n
∑

σ = x − µ( )2 n
i=1

n
∑{ }1 2

γ = x − µ( )3 n
i=1

n
∑{ }σ 3

 

 

 
 
 

 

 
 
 
 

 (50) 

 
Annual 1-Day High Flows 

The values of m , a  and b  are given in Table 13 for the at-site sequences of annual 1-day 

high flows in log-space. 
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Table 13: Pearson Type III Parameter for At-Site 
Sequences of Annual 1-Day High Flows in 
Log Space 

 m  a  b  

 Upper Mississippi Basin 

St. Croix 4.958 9.989 -0.058 
Jump 11.131 1055.841 -0.007 
Black 4.799 9.657 -0.081 
Maquaketa 7.802 183.970 -0.020 
Mississippi 5.667 10.806 -0.050 
Rock 4.398 11.204 -0.057 
Sugar 9.577 463.502 -0.013 
Pecatonica 7.040 191.858 0.017 
Cedar 5.334 9.751 -0.102 
Skunk 4.800 3.897 -0.136 
Mississippi 5.713 7.773 -0.059 
De Moines 4.983 7.293 -0.117 
Raccoon 5.645 26.086 -0.060 
Iroquois 4.849 13.331 -0.057 
Kankakee 4.336 11.754 -0.045 
Spoon 5.727 53.874 -0.031 
La Moines 4.615 5.277 -0.125 
Meramec 4.783 4.532 -0.166 
Bourbeuse 24.639 7,028.689 0.003 
Big 5.198 13.149 -0.079 
Meramec 6.029 28.042 -0.053 

 Missouri Basin 

Yellowstone 4.974 42.981 -0.018 
Clarks Fork 8.324 1,868.663 -0.002 
Yellowstone 5.241 23.933 -0.027 
Big Sioux 6.674 39.524 -0.069 
North Platte 4.092 10.138 -0.069 
Bear 3.991 20.981 0.075 
Elkhorn 36.204 8,367.870 -0.004 
Nishabottna 4.605 2.468 -0.206 
Grand 5.427 17.404 -0.063 
Thompson 6.287 49.173 -0.041 
Gasconade 5.681 17.553 -0.070 
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On the basis of regionalized annual 1-day high flows, the parameter values are given in 

Table 14. 

 

 
Pearson Type III →  Normal Distribution 

As a → ∞  the Pearson Type III distribution tends to the Normal distribution, N µ,σ( ),  

 

 

f x( ) =
1

2π σ
exp −

x − µ
σ

 
  

 
  

2 

 
 
 

 

 
 
 
 (51) 

 

where −∞ ≤ x ≤ ∞ . For an arbitrary sequence,  xi: i = 1,K, n{ }, the values of the 

parameters, µ  and σ  , of the Normal distribution are given by 

 

µ = x i n
i=1

n
∑

σ = xi − µ( )2

i=1

n
∑ n{ }1 2

 

 
  

 
 
 

 (52) 

 

For m = 0  and b = 1, the Pearson Type III distribution becomes the standard Gamma 

distribution 

 

f x( ) =
1

Γ a( )
x a −1 exp −x[ ] (53) 

 

If   U1,K,Uν  are independent random variables, each distributed as N 0,1( ), then 

Table 14: Pearson Type III Parameter for 
Regional Sequences of Annual 1-Day 
High Flows in Log Space 

 m  a  b  

Upper Mississippi Basin 

Log Space 1.323 29.530 -0.011 
Quasi-Log Space 2.071 72.959 -0.029 

Missouri Basin 

Log Space 1.313 23.972 -0.013 
Quasi-Log Space 1.856 51.656 -0.036 
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U j
j=1

ν
∑ = χν

2  is distributed as chi square with ν  degrees of freedom. The random variable 

χν
2 2 is distributed as standard Gamma with a = ν 2 

 

f χ 2( )=
1

2
ν
2 Γ ν 2( )

 

 
 

 

 
 

χ 2( )
ν
2

−1
exp −

χ 2

2
 

 
 

 

 
  (54) 

 

where χ 2 ≥ 0  and ν  is an integer. 

 

The standard Gamma distribution tends to the unit normal distribution as a → ∞ , i.e. as 

skewness γ → 0 : 

 

lim
a →∞

Pr ob x − a( )a
−

1
2 ≤ u

 

 
 

 

 
 = Φ u( )

=
1
2π

exp −
t 2

2
 

 
 

 

 
 −∞

u
∫

 (55) 

 

The Pearson Type III distribution tends to the unit normal distribution as a → ∞ : 

 

lim
a →∞

Pr ob x − m( )
b

− a
 

 
 

 

 
 a

−
1
2 ≤ u

 
 
  

 
 
  

= Φ u( ) (56) 

 

The chi square distribution tends to the unit normal distribution as a → ∞ : 

 

lim
a →∞

Pr ob
χν

2 − ν( )
2ν( )1 2 ≤ u

 

 
 
 

 

 
 
 

= Φ u( ) (57) 

 

Refer to Johnson and Kotz (1970). 

 

For a  large, Fisher (1922) proposed approximating the Normal distribution by the 

following transformation of  χν
2  

 
Prob χν

2 < x[ ]≈ Φ 2x − 2ν − 1( ) (58) 

 

More rapid convergence is given by the transformation of Wilson and Hilferty (1931) 
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Prob χν
2 < x[ ]≈ Φ x ν( )1 3

− 1+ 2 9ν( )[ ] 9 ν 2{ } (59) 

 

See Wadsworth and Bryan (1960). 
 

Fitting Right-Tail Normal Distributions 

For a Right-Tail Normal distribution, the values of µ  and σ  are partitioned by the 

values of x  greater than the median. Assume that the elements of  xi: i = 1,K, n{ } are in 

rank order from smallest to largest. To each element of  xi: i = 1,K, n{ }, a probability, 

F xi( ), is assigned, where for the Weibull plotting position, 

 
F xi( )= i n + 1( ) (60) 

 

It is assumed that the right and left tails of the Normal distribution are marked by the 

median, which for a Normal distribution is the mean, µ : the left tail extend from −∞  to 

the median, and the right tail extends from the median to ∞ . Thus the right tail of the 

Normal distribution is given by F xi( ) for  i = ν,K,n , where 

 

ν =

n + 1
2

; n odd

n + 2
2

; n even

 

 
  

 
 
 

 (61) 

 

A Right-Tail Normal distribution is defined by values of µ  and σ   that are themselves 

defined by the partial sequence  xi: i = ν,K, n{ } 

 

The parameter µ  of a Right-Tail Normal distribution may be defined as  

 

µ =
x ′ ν + x ′ ′ ν 

2
; n even

xν ; n odd

 
 
 

 
 

 (62) 

where 
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′ ν =
n
2

′ ′ ν = n + 2
2

 

 
  

 
 
 

n even (63) 

 

ν =
n + 1

2
; n odd  (64) 

 

By definition, for µ = median , 

 
F µ( )= 0.5  (65) 

 

The parameter σ  may be defined in several ways. Herein, three different method of 

determining σ  are considered, 1) the inflection point method, 2) the η − point  method, 

and 3) the mirrored spread method.  

 
Inflection Point Method 

Let x*  denote the value for which 

 

  
F x *( )= 0.8413L  (66) 

 

A general property of the Normal distribution is  

that 

 

x* − µ = σ  (67) 

 

where x*  marks the right inflexion point of the Normal density function. The left 

inflection point is given by x∗∗ − µ = σ . However, since µ  and σ  are defined by the 

observations greater than the median, the left inflection point may not match the left 

inflection point of a Left-Tail Normal distribution. In any case, the left tail of the 

observed distribution does not enter into determining the fit of a Right-Tail Normal 

distribution. 
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In general, x*  is determined by interpolation. Let x ′ i  and x ′ i +1  denote the elements of 

  xi: i = 1,K, n{ } for which   F x ′ i ( )= ′ i n + 1( )< 0.8413L  and 

  
F x ′ i +1( )= ′ i + 1( ) n + 1( )[ ]> 0.8413L , where by linear interpolation 

 

  

x∗ = x ′ i +1 −
x

′ i +1 − x
′ i ( ) F x

′ i +1( )− 0.8413L( )
F x ′ i +1( )− F x ′ i ( )( )  (68) 

 

whereby 

 

σ = x ∗ − µ  (69) 

 
η − Point  Method 

Let 
  

xij
: j = 1,K,η{ } denote an ordered sub-set of elements belonging to   xi: i = 1,K, n{ } 

where xij
≥ µ  ∀j   and  

 

η ≤

n + 1
2

; n odd

n
2

n even

 

 
  

 
 
 

 (70) 

 

Let F u( ) denote the unit Normal distribution: u ~ N 0,1( ). For  

 
F uij( )= F xij( )= ij n + 1( ) (71) 

 
uij

σ = xij
− d  (72) 

 

Therefore 

 

σ uijj=1

η
∑ = xijj=1

η
∑ − ηd  (73) 

 

whereby 

 

σ = xijj=1

η
∑ − dη

 
  

 
  uijj=1

η
∑  (74) 

 



Prepared  by  60 
Nicholas C. Matalas 709 Glyndon St., S.E.  
Hydrologist Vienna, VA 22180 1/22/01 

Prepared as Subcontractor to Under Contract to Contract 
Planning & Management  US Army Corps of Engineers Climate Variability and  
Consultants, Ltd. Institute of Water Resources Change and the Uncertainty of 
Carbondale, IL 62903 Ft. Belvoir, VA 22315 Flood Frequency Estimates 

where 

 

d =

1; Re gional Log Space
0; Re gional Quasi − Log Space
µ; At − Site Log Space

 

 
 

 
 

 (75) 

 

For a given value of η , there are θ  η − point  values of σ , where 

 

θ =

n + 1
2
η

 

 
 
 

 

 
 
 ;n odd

n
2
η

 

 
 
 

 

 
 
 ; n even

 

 

 
 
 

 

 
 
 

 (76) 

 

For η = 1, there are n + 1( ) 2  possible values of σ , if n  is odd or n 2 if n  is even. The 

inflection point method is a special case of the η − point  method where η = 1 and 

xi1
= x∗ , where x∗  is defined by Eq. (68). For η  equal to n + 1( ) 2  if n  is odd or n 2 if n  

is even, θ = 1. 

 
Mirrored Spread Method 

The mirrored spread method takes σ  to be twice the mean sum of squares about the 

mean of the values greater than the mean. The method yields 

 

σ = 2 n( ) xi − d( )2

i=ν

n
∑{ }1 2

 (77) 

 

where ν  and d  are defined by Eqs. (61) and (75). 

 
Parameter Values 

For the various sequences, the values of the parameters, µ   and σ , of the Right-Tail 

Normal distribution were determined. Each of the three methods for determining σ  

were used In the case of the η − point   method, η = 35  –  the flow sequences are of 

length n = 70 . 
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The at-site values of µ  and σ  for sequences of annual 1-day high flows in log space are 

given in Table 15. 

 

 

Table 15:  Right-Tail Normal Parameters  for Sequences of 
Annual 1-Day High Flows in Log Space 

 µ  σ  σ  σ  
  Inflection 

Point 
35-Point Mirrored 

Spread 

 Upper Mississippi Basin 

St. Croix 4.400 0.151 0.157 0.144 
Jump 3.886 0.192 0.204 0.205 
Black 4.051 0.179 0.202 0.198 
Maquaketa 4.051 0.295 0.298 0.263 
Mississippi 5.149 0.151 0.134 0.131 
Rock 3.761 0.205 0.184 0.173 
Sugar 3.423 0.276 0.308 0.282 
Pecatonica 3.703 0.290 0.263 0.247 
Cedar 4.386 0.281 0.261 0.242 
Skunk 4.274 0.190 0.256 0.232 
Mississippi 5.279 0.126 0.133 0.127 
De Moines 4.179 0.274 0.244 0.239 
Raccoon 4.090 0.330 0.312 0.287 
Iroquois 4.109 0.215 0.195 0.175 
Kankakee 3.815 0.159 0.142 0.135 
Spoon 4.088 0.213 0.214 0.196 
La Moines 3.984 0.241 0.248 0.230 
Meramec 4.086 0.243 0.258 0.258 
Bourbeuse 4.107 0.245 0.254 0.242 
Big 4.167 0.238 0.275 0.252 
Meramec 4.570 0.275 0.248 0.245 

Average 4.169 0.227 0.228 0.214 
Std. Deviation 0.430 0.056 0.055 0.050 

 Missouri Basin 

Yellowstone 4.212 0.096 0.106 0.105 
Clarks Fork 3.841 0.116 0.113 0.105 
Yellowstone 4.584 0.128 0.135 0.126 
Big Sioux 4.009 0.337 0.360 0.360 
North Platte 3.421 0.175 0.188 0.170 
Bear 2.315 0.418 0.438 0.405 
Elkhorn 4.104 0.315 0.318 0.310 
Nishabottna 4.149 0.218 0.229 0.227 
Grand 4.394 0.180 0.194 0.193 
Thompson 4.273 0.245 0.275 0.251 
Gasconade 4.442 0.289 0.297 0.276 

Average 3.977 0.229 0.241 0.230 
Std. Deviation 0.635 0.102 0.106 0.102 
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The three methods yield comparable Right-Tail Normal values of σ . The average values 

of σ  are nearly the same for each of the methods. The average values are somewhat larger 

for the Missouri basin than for the Upper Mississippi basin. The standard deviations of 

the values of σ  within the Upper Mississippi basin are about half those within the 

Missouri basin. 

 

The average values of the Right-Tail Normal values of σ  are somewhat smaller than the 

average values overall values of σ . Refer to Tables 1 and 10. The variability of the Right-

Tail Normal valuesσ  over the sequences in either basin is nearly equal to the variability 

among the at-site values of  σ . Refer to Tables 11 and 15. 

 

On a regional basis, the values of µ   and σ  are given in Table 16. 

 

 

From Table 16, it is noted that the values of µ   and σ   in a given space log space for one 

basin are almost equal to the values for that space for the other basin. In either log space 

or quasi-log, the three methods yield almost equal values of σ . 

 
Goodness of Fit 

The comparison of the Pearson Type III distribution with the Right-Tail Normal 

distribution is in terms of magnitudes of the estimates of the 50-year event for the 70-

year sequences and of both the 50-year and the 100-year event for the 100-year 

sequences. 

Table 16:  Right-Tail Normal Parameters for Regional Sequences 
of Annual 1-Day High Flows  

 µ  σ  σ  σ  
  Inflection 

Point 
35-Point Mirrored 

Spread 

 Upper Mississippi Basin 

Log Space 1 0.057 0.056 0.053 
Quasi-Log Space 0 0.236 0.234 0.223 

 Missouri Basin 

Log Space 1 0.053 0.057 0.054 
Quasi-Log Space 0 0.218 0.234 0.227 
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Let   xi: i = 1,K, n{ } denote a sequence of flows ordered from smallest, x1 , to largest, xn . 

Each flow is assigned a probability, defined as the Weibull plotting position. Refer to Eq. 

(16). The T − year  flow, X T( ), where T  equals 50 or 100, is given by linear 

interpolation. Let x ′ i  and x ′ i +1  denote the elements of  xi: i = 1,K, n{ }, for which 

F x ′ i ( )= ′ i n + 1( )[ ]< F∗  and F x ′ i +1( )= ′ i + 1( ) n + 1( )[ ]> F ∗ . By linear interpolation 

 

X T( ) = x ′ i +1 −
x

′ i +1( ) F x
′ i +1( )− F ∗( )

F x ′ i +1( )− F x ′ i ( )( )  (78) 

 

where  

F∗ =
0.98; if T = 50
0.99; if T = 100

 
 
  

 (79) 

 

Let X T PIII( ) denote the value of the T − year  flow obtained from a fitted Pearson Type 

III distribution: 

 

F∗ =
f x( )

m

X T PIII( )
∫ dx; if a > 0

f −x( )
m

X T PIII( )
∫ dx; if a < 0

 

 
  

 
 
 

 (80) 

 

where F∗  is defined by Eq. (79), f x( ), by Eq. (46) and a , by Eq.(49) 

 

Let X T RTN( ) denote the value of the T − year  flow obtained from a fitted Right-Tail 

Normal distribution: 

 

F∗ = f x( )
−∞

X T RTN( )
∫ dx  (81) 

 

where F∗  is defined by Eq. (79), and f x( ), by Eq. (51). 
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Let  

 
∆ PIII( ) = X T( )− X T PIII( ) (82) 

 

denote the difference between the estimates of the T − year  flow obtained from the 

observations and the fitted Pearson Type III distribution. Let 

 
∆ RTN( ) = X T( ) − X T RTN( ) (83) 

 

If ∆ PIII( ) < ∆ RTN( ) , then the Pearson Type III distribution provides a better estimate 

of the T − year  flow than the Right-Tail Normal distribution. If, however, 

∆ PIII( ) > ∆ RTN( ) , then the Right-Tail Normal distribution provides a better estimate 

of the T − year  flow. 

 

The comparison of the goodness of fit of the Pearson Type III distribution and the 

Right-Tail Normal distribution among the at-site sequences of annual 1-day high flows 

in log space is given in Table 17. 
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Table 17: Goodness of Fit per T = 50 − year  Flow Relative to At-Site 
Sequences  of 1-Day high Flows in Log Space 

River Skewness ∆ PIII( ) ∆ RTN( ) ∆ RTN( ) ∆ RTN( ) 
   Inflection 

Point 
35-Point Mirrored 

Spread 

 Upper Mississippi Basin 

St. Croix -0.633 0.008 -0.013 -0.026 0.000* 
Jump -0.062 0.131* 0.181 0.155 0.154 
Black -0.644 0.100 0.125 0.077* 0.084 
Maquaketa -0.147 -0.074 -0.141 -0.147 -0.074* 
Mississippi -0.608 0.030 -0.021 0.014* 0.020 
Rock -0.598 0.013* -0.085 -0.043 -0.020 
Sugar -0.093 -0.034 -0.011* -0.077 -0.023 
Pecatonica 0.144 0.026 -0.092 -0.035 -0.003* 
Cedar -0.640 -0.029* -0.117 -0.076 -0.036 
Skunk -1.013 0.086 0.088 -0.049 0.001* 
Mississippi -0.717 0.066 0.055 0.039* 0.053 
Des Moines -0.741 0.078 -0.019* 0.046 0.054 
Raccoon -0.392 0.021 -0.099 -0.060 -0.009* 
Iroquois -0.548 -0.034* -0.132 -0.091 -0.050 
Kankakee -0.583 0.046 -0.023 0.011* 0.026 
Spoon -0.272 0.007* -0.021 -0.024 0.013 
La Moines -0.871 0.009* -0.068 -0.083 -0.045 
Meramec -0.940 0.077 0.058 0.028 0.028* 
Bourbeuse 0.024 0.095 0.095 0.078* 0.102 
Big -0.552 0.063 0.062 -0.013* 0.035 
Meramec -0.378 0.043 -0.028 0.027* 0.034 

Average -0.489 0.035 -0.010 -0.012 -0.016 
Std. Deviation 0.319 0.052 0.089 0.070 0.054 
 Missouri Basin 

Yellowstone -0.307 0.044 0.066 0.040* 0.041 
Clark’s Fork -0.046 0.012 -0.010 -0.004* 0.012 
Yellowstone -0.409 0.042 0.023 0.008* 0.027 
Big Sioux -0.318 0.042* 0.104 0.057 0.056 
North Platte -0.628 0.024 0.008* -0.019 0.018 
Bear 0.437 0.126 -0.065 -0.107 -0.038* 
Elkhorn -0.022 0.044* 0.079 0.081 0.089 
Nishabottna -1.273 0.185 0.114 0.092* 0.096 
Grand -0.479 0.080* 0.121 0.090 0.093 
Thompson -0.285 0.036 0.059 -0.005* 0.045 
Gasconade -0.477 0.073 0.010 -0.007* 0.035 

Average -0.346 0.064 0.046 0.021 0.043 
Std. Deviation 0.423 0.051 0.058 0.059 0.040 

* Best Fit      
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From Table 17, it is noted that on average the Right-Tail Normal distribution provides a 

better estimate of the T = 50 − year  flow than the Pearson Type III distribution in both 

the Upper Mississippi basin and the Missouri basin. For 15 of the 21 sequences in the 

Upper Mississippi basin, the Right-Tail Normal distribution out performs the Pearson 

Type III distribution. Of those 15 sequences, method 2 – the η − point  method – is 

somewhat better than method 3 – the mirrored spread method –  by a factor of 8-to-6. 

However, for 14 of the 15 sequences, the Right-Tail Normal distribution conditioned on 

method 3 is better than the Pearson Type III distribution, whereas, for 10 of the 15 

sequences, the Right-Tail Normal distribution conditioned on method 2 is better than 

the Pearson Type III distribution. 

 

For 8 of the 11 sequences in the Missouri basin, the Right-Tail Normal distribution out 

performs the Pearson Type III distribution. Of those 8 sequences, method 2 performs 

best, although in each case the Right-Tail Normal distribution conditioned on method 3 

better fits the flows than the Pearson Type III distribution. 

 

For the 32 sequences in the two basins, 23 are better fitted with the Right-Tail Normal 

distribution than with the Pearson Type III distribution. 

 

The probability distributions fitted with the Pearson Type III distribution and with the 

Right-Tail Normal distribution are shown for each of the 32 sequences in Appendix I. 

 

The comparison of the goodness of fit of the Pearson Type III distribution and the 

Right-Tail Normal distribution among the regional sequences of annual 1-day high flows 

in log space is given in Table 18. 
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For both the Upper Mississippi and the Lower Missouri basin, the regional sequences are 

best fitted with a Right-Tail Normal distribution. Although, the Right-Tail Normal 

distribution conditioned on the inflection point method is best in quasi-log space in the 

Upper Mississippi basin, Right-Tail Normal distribution conditioned on the 35-point 

method is better is better than the Pearson Type III distribution in all cases. 

 

The probability distribution fitted with the Pearson Type III distribution and with the 

Right-Tail Normal distribution are shown for each of the 4 regional sequences in 

Appendix J. 

 
Real Space 

The distributions of the at-site sequences in log space fitted with a Pearson Type III 

distribution and with a Right-Tail Normal distribution are transformed into real space 

through exponentiation. The Pearson Type III distribution in log space exponentiates to 

the Log-Pearson Type III distribution in real space, and the Right-Tail Normal 

distribution in log space exponentiates to the Right-Tail Log-Normal distribution in real 

space. The transform is monotonic, and therefore it does not affect the relative 

magnitudes of estimates of the T − year  flow. Whichever distribution fits best in log 

space, its real space transform fits best in real space. 

 

The distributions of the regional sequences in log space fitted with a Pearson Type III 

distribution and with a Right-Tail Normal distribution are transformed into real space 

Table 18: Goodness of Fit per  T = 50 − year  Relative to Regional Sequences  
of 1-Day high Flows in Log Space 

River Skewness ∆ PIII( ) ∆ RTN( ) ∆ RTN( ) ∆ RTN( ) 
   Inflection 

Point 
35-Point Mirrored 

Spread 

 Upper Mississippi Basin 

Log Space -0.368 0.007 -0.003 0.002* 0.005 
Quasi-Log Space -0.234 0.029 0.000* 0.004 0.027 

 Missouri Basin 

Log Space -0.408 0.019 0.024 0.013* 0.019 
Quasi-Log Space -0.278 0.081 0.106 0.072* 0.087 

* Best Fit      
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as follows. Let ′ X T( ) denote one of the three estimates of the T − year  flow, namely, 

X T( ), X T PIII( ) or X T RTN( ). Let ˜ x j  denote the median of the logs of the flows at the 

j − th  site in the region. The real space estimate of the T − year  flow at the j − th , site 

′ Y j T( ), is given by 

 
′ Y j T( ) = Exp ˜ x j ′ X T( )[ ] (84) 

 

Multiplying each of the log space estimates of the T − year  flow by a constant, namely, 

˜ x j , does not effect the relative magnitudes of the estimates. Because exponentiation does 

not effect the relative magnitudes of the products of the log space estimates of the 

T − year  flows by a constant, whichever distribution fits best in log space, its real space 

transform fits best in real space.  

 

The distributions of the regional sequences in quasi-log space fitted with a Pearson Type 

III distribution and with a Right-Tail Normal distribution are transformed into real 

space as follows. Let ′ ′ X T( ) denote one of the three estimates of the T − year  flow, 

namely, X T( ), X T PIII( ) or X T RTN( ). Let w j  denote the median of the real space flows 

at the j − th  site. The real space estimate of the T − year  flow at the j − th  site, ′ ′ Y j T( ), is 

given by 

 
′ ′ Y j T( ) = w jExp ′ X T( )[ ] (85) 

It follows that whichever distribution fits best in log space, its real space transform fits 

best in real space. 

 

If the estimates of the T − year  flows at specific sites in a region are obtained through at-

site analysis, then for a good majority of the sites the better estimates are those based on 

the Right-Tail Normal distribution in log space or the Right-Tail Log-Normal 

distribution in real space. On the other hand, if the estimates of the T − year  flows at the 

specific sites are obtained through regional analysis, then for all sites he better estimates 

are those based on the Right-Tail Normal distribution in log space or the Right-Tail 

Log-Normal distribution in real space. 
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With the Right-Tail Normal distribution in log space, the matter of whether one or more 

of the “low” flows should be censored need not be addressed. By using the Right-Tail 

Normal distribution, there is no need to determine the skewness at site or through 

regionalization. 
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Comparison of Pearson Type III and Right-Tail Normal Distributions 
– Annual Peak Flows 

A comparison between the Pearson Type III distribution and the Right-Tail Normal 

distribution is made with respect to estimates of the T − year , for T = 50,100 .  The 

estimates the T − year  floods are obtained from sequences of annual peaks, 7 along the 

Upper Mississippi river and 7 along the Missouri river. The Mississippi river sequences 

span the 100 year period 1896-1995, and the Missouri river sequences span the 100 year 

period 1898-1997. See Table 19.  

 

 

For further description of these sequences refer to Planning & Management Consultants, 

Ltd. (1999.) 

 

Table 19:  Location and Statistical Description of 
Sequences of Annual Peak Flows 

Locale State Flow Descriptors 

  µ  σ  γ  

Upper Mississippi Basin 

St. Paul MN 4.576 0.258 -0.295 
Winona MN 4.931 0.212 -0.803 
Dubuque IA 5.092 0.163 -0.623 
Clinton IA 5.112 0.154 -0.432 
Keokuk IA 5.241 0.158 -0.584 
Hannibal MO 5.296 0.188 -1.350 
St. Louis MO 5.691 0.169 -0.477 

Average  5.134 0.186 -0.650 
Std. Deviation  0.342 0.038 0.347 

Missouri Basin 

Sioux City IA 5.158 0.196 -0.522 
Omaha NE 5.157 0.186 -0.471 
Nebraska City NE 5.216 0.187 -0.494 
St. Joseph MO 5.222 0.159 -0.185 
Kansas City MO 5.322 0.184 -0.017 
Booneville MO 5.409 0.186 -0.097 
Hermann MO 5.492 0.196 0.025 

Average  5.282 0.185 -0.252 
Std. Deviation  0.128 0.012 0.226 
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The comparison between the Pearson Type III distribution and the Right-Tail Normal 

distribution is in reference to the relative goodness of fit of the distributions with respect 

to estimates of the T − year  flood, where T = 50,100 . The comparison is made in 

reference to both at-site sequences and regionalized sequences. The assessment of the 

relative goodness of fit of the distributions is limited to estimates of the T − year  flood, 

for T ≥ 2 . To consider values of T < 2 , the definition of the right tail would need to be 

revised. 

 

In contrast to the comparison in terms of the annual 1-day high flows discussed above, 

the comparison in terms of the annual peak flows takes into account the statistical 

significance in the differences in the estimates of the T − year  floods derived from the 

Pearson Type III distribution and the Right-Tail Normal distribution. 

 
Goodness of Fit 

The Pearson Type III and the Right-Tail Normal distributions were fitted to ordered 

sequences of flows using the Weibull plotting position. To fit the Pearson Type III 

distribution, the parameters of the distribution were determined by the method of 

moments. See Table 20. 

 

 

Table 20: Pearson Type III Parameter for At-Site 
Sequences of Annual Peak Flows in Log Space 

 m  a  b  

 Upper Mississippi Basin 

St. Paul 6.325 45.942 -0.295 
Winona 5.458 6.202 -0.085 
Dubuque 5.616 10.287 -0.051 
Clinton 5.824 21.451 -0.033 
Keokuk 5.781 11.717 -0.046 
Hannibal 5.574 2.195 -0.127 
St. Louis 6.4 17.567 -0.040 

 Missouri Basin 

Sioux City 5.908 14.654 -0.051 
Omaha 5.949 18.067 -0.044 
Nebraska City 5.972 16.369 -0.046 
St. Joseph 6.944 117.139 -0.015 
Kansas City 26.258 12,994.935 -0.002 
Booneville 9.261 426.874 -0.009 
Hermann 21.354 6,573.286 0.002 
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The Right Tail Normal distribution was fitted to an observed distribution using each of 

the three methods for estimating the parameters of the Right-Tail Normal distribution –  

inflection point, η − point and mirrored spread– where η = 50 . See Table 21. 

 

 

On a regional basis, in log space and quasi-log space, the parameters of the Fitted 

Pearson Type III and Right-Tail Normal distributions are given in Tables 22 and 23. 

 

Table 21:  Right-Tail Normal Parameters for At-Site Sequences of 
Annual Peak Flows in Log Space  

 µ  σ  σ  σ  
  Inflection 

Point 
50-Point Mirrored 

Spread 

 Upper Mississippi Basin 

St. Paul 4.600 0.117 0.224 0.244 
Winona 4.956 0.178 0.173 0.173 
Dubuque 5.119 0.132 0.125 0.128 
Clinton 5.125 0.120 0.137 0.133 
Keokuk 5.252 0.141 0.140 0.136 
Hannibal 5.324 0.153 0.140 0.140 
St. Louis 5.694 0.181 0.170 0.156 

Average 5.153 0.146 0.158 0.159 
Std. Deviation 0.366 0.026 0.034 0.041 

 Missouri Basin 

Sioux City 5.154 0.168 0.196 0.179 
Omaha 5.161 0.165 0.176 0.165 
Nebraska City 5.248 0.132 0.147 0.144 
St. Joseph 5.239 0.122 0.136 0.139 
Kansas City 5.329 0.153 0.166 0.175 
Booneville 5.401 0.192 0.197 0.189 
Hermann 5.484 0.211 0.214 0.201 

Average 5.288 0.163 0.176 0.170 
Std. Deviation 0.123 0.031 0.028 0.023 
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Let X T( ) denote the estimate of the T − year  flood given by the observed distribution. 

Let X T PIII( ) denoted the estimate of the T − year  flood given by the Pearson Type III 

distribution fitted to the observed distribution. Let X T RTNi( ) denote the estimate of the 

T − year  flood given by the Right-Tail Normal distribution fitted to the observed 

distribution using method i  for estimating the parameter of the Right Tail Normal 

distribution, where i = 1,2, 3 refers to the inflection point method, the η = 50 -point 

method and the mirrored spread method. 

 

Table 22: Pearson Type III Parameter for 
Regional Sequences of Annual Peak Flows  

 m  a  b  

Upper Mississippi Basin 

Log Space 1.104 10.820 -0.039 
Quasi-Log Space 0.590 12.633 -0.048 

Missouri Basin 

Log Space 1.265 62.403 -0.004 
Quasi-Log Space 1.295 53.874 -0.024 

Table 23:  Right-Tail  Normal Parameters for Regional Sequences 
of Annual Peak Flows   

 µ  σ  σ  σ  
  Inflection 

Point 
50-Point Mirrored 

Spread 

 Upper Mississippi Basin 

Log Space 1 0.029 0.028 0.027 
Quasi-Log Space 0 0.153 0.149 0.144 

 Missouri Basin 

Log Space 1 0.029 0.031 0.030 
Quasi-Log Space 0 0.149 0.161 0.159 
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Let 

 
∆ PIII( ) = X T( )− X T PIII( ) (78) 

 

denote the difference between the estimates of the T − year  flood given by the observed 

and the fitted Pearson Type III distributions.  

Let 

 
∆ RTNi( )= X T( )− X T RTNi( ) (79) 

 

denote the difference between the estimates of the T − year  flood given by the observed 

and the fitted Right-Tail Normal Distribution using parameter estimation method i . 

 

If ∆ PIII( ) < ∆ RTNi( )  then the Pearson Type III distribution provides a better estimate 

of the T − year  flood, and thereby a better fit to the observed distribution, than the 

Right-Tail Normal distribution using parameter estimation method i . If 

∆ PIII( ) > ∆ RTNi( )  then the Right-Tail Normal distribution using parameter estimation 

method i   provides a better estimate of the T − year  flood, and thereby a better fit to the 

observed distribution, than the Pearson Type III distribution. If ∆ PIII( ) = ∆ RTNi( ) , 

then there is no difference in the goodness of fits of the Pearson Type III distribution 

and the Right-Tail Normal distribution using parameter estimation method i . 

 
Statistical Assessment of Goodness of Fit 

At-Site Analysis 

The statistical significance of the difference between ∆ PIII( ) and ∆ RTNi( ) is assessed as 

follows. Let ∆ j PIII( ) and ∆ j RTNi( ) denote the differences between the observed 

estimates of the T − year  flood given by the observed and the fitted Pearson Type III 

distribution and the Right-Tail Normal Distribution using parameter estimation method 

i , respectively at the j − th , where j − th . For either the Upper Mississippi basin or the 

Missouri basin, M = 7 .  
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Let  

 

ξ PIII( ) = ∆ j PIII( ) M
j =1

M
∑  (80) 

 

ς PIII( ) = ∆ j PIII( ) − ξ PIII( )[ ]2
M

j=1

M
∑

 
 
 

 
 
 

1 2

 (81) 

 

denote the mean and standard deviation of the values ∆ j PIII( ). The mean and standard 

deviation of the values ∆ j RTNi( ) are  

 

ξ RTNi( )= ∆ j RTNi( ) M
j=1

M
∑  (82) 

 

ς RTNi( )= ∆ j RTNi − ξRTNi[ ]2

j=1

M
∑

 
 
 

 
 
 

1 2

 (83) 

 

Let ˜ ξ PIII( ) and ˜ ξ RTNi( ), and ˜ ς PIII( ) and ˜ ς RTNi( ) denote the “population” means and 

standard deviations, i.e., the values of the means and standard deviations of the ∆ j PIII( ) 

and ∆ j RTNi( ) that would attain with M = ∞ . 

 

If the null hypothesis 

 
H0

˜ ς 2( ): ˜ ς 2 PIII( ) = ˜ ς 2 RTNi( ) 

 

is not rejected at probability level α , then if the null hypothesis 

 

H0
˜ ξ ( ): ˜ ξ PIII( ) = ˜ ξ RTNi( ) 

 

is not rejected at probability level β , then there is no statistical difference in the goodness 

of fits of the Pearson Type III distribution and the Right-Tail Normal distribution to the 

observed distribution. In general, α = β . 
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The null hypothesis H0
˜ ς 2( ) is assess by means of the F -distribution. See e.g. Johnson 

and Kotz (1970). Let 

 
ς 1

2 = max ς 2 PIII( ),ς 2 RTNi( ){ } (84) 

 
ς 2

2 = min ς 2 PIII( ),ς 2 RTNi( ){ } (85) 

 

Let 

 

F =
M1ς 1

2 M1 − 1( )
M2ς 2

2 M2 − 1( )  (86) 

 

The probability that F  will fall in the interval dF  is 

 

dP =
ν 1

ν 1 2ν 2
ν 2 2F ν1 −2( ) 2dF

B ν1 2,ν2 2( ) ν1F + ν2( )ν1 +ν2( ) 2  (87) 

 

where B ν1 2,ν2 2( ) denotes the beta function with arguments ν1 2  and ν2 2. See e.g. 

Abramowitz and Stegun (1964). 

 

Thus 

 

Prob F > F∗[ ]= 1− dP
0

F

∫  (88) 

 

If Prob F > F∗[ ]≥ α , then the null hypothesis H0
˜ ς 2( ) is rejected. 

 

Herein, M1 = M2 = M , where M = 7  for both the Upper Mississippi basin and the Lower 

Missouri basin, and M = 14  in the case where the basins are pooled. 

 

Assume that the null hypothesis H0
˜ ς 2( ) is not rejected, i.e., Prob F ≤ F∗[ ]< α , in which 

case the null hypothesis H0
˜ ξ ( ) may be assessed by means of the t -distribution. Let 

 

t = ξ PIII( )− ξ RTNi( )[ ] M1ς PIII( )+ M2ς RTNi( )
M1 + M2 − 2

 
 
 

  

 
 
 

  

1 2
M1M2

M1 + M2

 
 
 

  

 
 
 

  

1 2

 (89) 



Prepared  by  77 
Nicholas C. Matalas 709 Glyndon St., S.E.  
Hydrologist Vienna, VA 22180 1/22/01 

Prepared as Subcontractor to Under Contract to Contract 
Planning & Management  US Army Corps of Engineers Climate Variability and  
Consultants, Ltd. Institute of Water Resources Change and the Uncertainty of 
Carbondale, IL 62903 Ft. Belvoir, VA 22315 Flood Frequency Estimates 

 

where t  is distributed as 

 

dt =
1

M∗( )1 2 B M∗ 2,1 2( )
 

 
 
 

 

 
 
 1 +

t 2

M∗

 

 
 

 

 
 

− M ∗+1( )2

 (90) 

 

where B M∗ 2,1 2( ) denotes the beta function with arguments M∗ 2 and 1 2 . Refer to 

Abramowitz and Stegun (1964). If  

 

Prob t > t ∗[ ]= 1 − dt
−∞

t

∫ < β  (91) 

 

then the null hypothesis H0
˜ ξ ( ) is rejected. 

 
Regional Analysis-Log Space 

To statistically assess the goodness of fits of the Pearson Type III distribution and the 

Right-Tail Normal distribution to a regionalized distribution, the regional values of 

∆ PIII( ) and ∆ RTNi( ) are transposed into at-site values as follows. Let ω j  denote the 

median of the logs of the flows at site j . The at-site fit of the Pearson Type III 

distribution and the Right-Tail Normal distribution at the j − th  site derived via 

regionalization in log space are given as 

 
δ j PIII( ) = ω j ∆ PIII( ) (92) 

 
δ j RTNi( )= ω j ∆ RTNi( ) (93) 

 

It is noted that if the regional distribution is best fitted by the Pearson Type III (Right-

Tail Normal distribution), then at-site distribution derived through regionalization is 

best fitted by the Pearson Type III (Right-Tail Normal distribution). The at-site 

goodness of fit at the j − th  site is measured by the regional goodness of fit times a 

constant, namely, the median of the logs of the flows at the j − th  site. 

 

The means and the standard deviations of the δ j PIII( ) and the δ j RTNi( ) are given by 

Eqs. (80) through (83) with ∆ j PIII( ) and ∆ j RTNi( ) replaced by δ j PIII( ) and δ j RTNi( ), 

respectively. Note,  
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ξ PIII( ) = ∆ PIII( ) ω j M
j=1

M
∑

= ∆ PIII( )ω 
 (94) 

 

ς PIII( ) = ∆ PIII( ) ω j − ω [ ]2
M

j =1

M
∑

 
 
 

 
 
 

1 2

 (95) 

 

ξ RTNi( )= ∆ RTNi( ) ω j M
j=1

M
∑

= ∆ RTNi( )ω 
 (96) 

 

ς RTNi( )= ∆ RTNi( ) ω j − ω [ ]2
M

j=1

M
∑

 
 
 

 
 
 

1 2

 (97) 

 
Regional Analysis-Quasi-Log Space 

Let 

 
Ψ PIII( ) = exp ∆ PIII( )[ ] (98) 

 
Ψ RTNi( )= exp ∆ RTNi( )[ ] (99) 

 

Let θ j  denote the median of the flows at the j − th  site. The at-site fit of the Pearson 

Type III distribution and the Right-Tail Normal distribution at the j − th  site derived via 

regionalization in quasi-log space are given as 

 
ψ j RTNi( )= θ jΨ RTNi( ) (100) 

 
ψ j RTNi( )= θ jΨ RTNi( ) (101) 

 

whereby 

 

ξ PIII( ) = Ψ PIII( ) θ j M
j=1

M
∑

= Ψ PIII( )θ 
 (102) 
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ς PIII( ) = Ψ PIII( ) θ j − θ [ ]2
M

j=1

M
∑

 
 
 

 
 
 

1 2

 (103) 

 

ξ RTNi( )= Ψ RTNi( ) θ j M
j=1

M
∑

= Ψ RTNi( )θ 
 (104) 

 

ς RTNi( )= Ψ RTNi( ) θ j −θ [ ]2
M

j=1

M
∑

 
 
 

 
 
 

1 2

 (105) 

 

It follows that if the regional distribution is best fitted by the Pearson Type III (Right-

Tail Normal distribution), then at-site distribution derived through regionalization is 

best fitted by the Pearson Type III (Right-Tail Normal distribution). The at-site 

goodness of fit at the j − th  site is measured by the anti-log of the regional goodness of fit 

times a constant, namely, the median of the flows at the j − th  site.  
 

At-Site Goodness of Fit 

The at-site values of ∆ PIII( ) and ∆ RTNi( ) conditioned on T = 50,100   are given in 

Tables 24a and 24b. 
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Table 24a: Goodness of Fit per T = 50 − year  Flow Relative to At-Site 
Sequences  of Annual Peak Flows in Log Space  

River Skewness ∆ PIII( ) ∆ RTN( ) ∆ RTN( ) ∆ RTN( ) 
   Inflection 

Point 
50-Point Mirrored 

Spread 

 Upper Mississippi Basin 

St. Paul -0.295 0.127* 0.228 0.131 0.132 
Winona -0.803 0.067 0.016* 0.025 0.025 
Dubuque -0.623 0.012 -0.007 -0.007 -0.000* 
Clinton -0.432 -0.015 0.004* -0.031 -0.022 
Keokuk -0.584 0.044 0.016* 0.019 0.027 
Hannibal -1.350 0.098 -0.001* 0.027 0.025 
St. Louis -0.477 -0.028* -0.100 -0.078 -0.048 

Average -0.650 0.044 0.022 0.012 0.020 
Std. Deviation 0.347 0.058 0.099 0.064 0.057 
 Missouri Basin 

Sioux City -0.522 -0.015 0.009* -0.037 -0.019 
Omaha -0.471 0.031* 0.044 0.033 0.037 
Nebraska City -0.494 0.037 0.066 0.037* 0.043 
St. Joseph -0.185 0.071* 0.114 0.086 0.080 
Kansas City -0.017 0.059* 0.115 0.088 0.070 
Booneville -0.097 -0.051 -0.054 -0.065 -0.048* 
Hermann 0.025 0.036 0.011 0.006* 0.032 

Average -0.252 0.024 0.044 0.021 0.028 
Std. Deviation 0.238 0.043 0.061 0.058 0.046 

 Pooled Basins 

Average -0.452 0.034 0.033 0.017 0.024 
Std. Deviation 0.353 0.050 0.080 0.059 0.050 

* Minimum Absolute Difference in Fit     
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In the case of the 50 − year  flood, the Right-Tail Normal distribution provides a better 

fit to the observed distribution than the Pearson Type III distribution at a majority of the 

sites – 5 of the 7 in the Upper Mississippi basin and 4 of the 7 in the Missouri basin. In 

the case of the 100 − year  flood, the Right-Tail Normal Distribution is more dominate 

than the Pearson Type III distribution. At all 7 site in the Upper Mississippi basin and at 

5 of the 7 sites in the Missouri basin, the Right-Tail Normal distribution provides a 

better fit to the observed distribution than the Pearson Type III distribution. 

 

Table 24b: Goodness of Fit per T = 100 − year  Flow Relative to At-Site 
Sequences  of Annual Peak Flows in Log Space  

River Skewness ∆ PIII( ) ∆ RTN( ) ∆ RTN( ) ∆ RTN( ) 
   Inflection 

Point 
50-Point Mirrored 

Spread 

 Upper Mississippi Basin 

St. Paul -0.295 0.113 0.221 0.112* 0.113 
Winona -0.803 0.130 0.058* 0.068 0.068 
Dubuque -0.623 0.077 0.048* 0.064 0.056 
Clinton -0.432 0.066 0.081 0.041* 0.051 
Keokuk -0.584 0.104 0.064 0.066 0.076 
Hannibal -1.350 0.151 0.020* 0.051 0.049 
St. Louis -0.477 0.083 -0.008* 0.017 0.051 

Average -0.650 0.103 0.069 0.082 0.066 
Std. Deviation 0.347 0.030 0.073 0.045 0.023 
 Missouri Basin 

Sioux City -0.522 0.177 0.195 0.142* 0.162 
Omaha -0.471 0.163 0.171 0.156* 0.162 
Nebraska City -0.494 0.114 0.141 0.107* 0.114 
St. Joseph -0.185 0.118* 0.165 0.133 0.126 
Kansas City -0.017 0.103* 0.166 0.136 0.116 
Booneville -0.097 0.117 0.112 0.099* 0.119 
Hermann 0.025 0.039 0.010 0.005* 0.034 

Average -0.252 0.119 0.137 0.111 0.119 
Std. Deviation 0.238 0.045 0.062 0.051 0.043 

 Pooled Basins 

Average -0.452 0.111 0.137 0.111 0.119 
Std. Deviation 0.353 0.038 0.074 0.048 0.043 

* Minimum Absolute Difference in Fit     
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The fits of the Pearson Type III distributions and the Right-Tail Normal distributions to 

the observed at-site distributions are shown in Appendix K. The Right-Tail Normal 

distributions are fitted using the mirrored spread method to estimate the distribution’s 

parameters. 
 

Assessment of Variances of Differences in Fits 

The F  values and their corresponding probabilities relating to the variances of the at-site 

differences in the fits of the Pearson Type III distribution and the Right-Tail Normal 

Distribution to the observed distribution are given in Table 25a and 25b. 

 

 

Table 25a: F Values Based on At-Site Fits of the 
Pearson Type III and the Right-Tail 
Normal Distributions to Observed 
Distributions 

Method 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 Upper Mississippi Basin 

Inflection 2.951 5.767 
50-Point 1.244 0.916 
Mirrored Spread 0.970 0.565 

 Missouri Basin 

Inflection 2.042 1.911 
50-Point 1.837 1.295 
Mirrored Spread 1.168 0.918 

 Pooled Basins 

Inflection 2.570 3.877 
50-Point 1.402 1.622 
Mirrored Spread 1.004 1.299 
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In neither the Upper Mississippi basin or the Lower Missouri basin is the null 

hypothesis, H0
˜ ς 2( ), rejected at probability level α ≤ 0.05  in estimating the 50 − year  

flood with the Right-Tail Normal distribution. In the Upper Mississippi basin the null 

hypothesis, H0
˜ ς 2( ), is rejected at probability level α = 0.05  in the case where the 

mirrored spread method is used to estimate the 100 − year  flood with the Right-Tail 

Normal distribution. In the case where the basins are pooled, the null hypothesis, 

H0
˜ ς 2( ), is rejected at probability level α = 0.05  in estimating the 50 − year  flood and at 

probability level α = 0.01  in estimating the 100 − year  flood by the inflection point 

method with the Right-Tail Normal distribution. For neither the estimate of the 

50 − year  flood nor the 100 − year  flood is the null hypothesis, H0
˜ ς 2( ), rejected at 

probability level α ≤ 0.05  in using either the 50-point method or the mirrored spread 

method with the Right-Tail Normal distribution. 

 
Assessment of Means of Differences in Fits 

The t  values and their corresponding probabilities relating to the variances of the at-site 

differences in the fits of the Pearson Type III distribution and the Right-Tail Normal 

Distribution to the observed distribution are given in Table 26a and 26b. 

 

Table 25b: Probability of F Values  Based on At-
Site Fits of the Pearson Type III and 
the Right-Tail Normal Distributions to 
Observed Distributions 

Method 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 Upper Mississippi Basin 

Inflection 0.107 0.026 
50-Point 0.399 0.541 
Mirrored Spread 0.514 0.747 

 Missouri Basin 

Inflection 0.203 0.255 
50-Point 0.239 0.382 
Mirrored Spread 0.428 0.540 

 Pooled Basins 

Inflection 0.050 0.010 
50-Point 0.276 0.197 
Mirrored Spread 0.497 0.322 
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Table 26a:  t Values Based on At-Site Fits of the 
Pearson Type III and the Right-Tail 
Normal Distributions to Observed 
Distributions 

Method 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 Upper Mississippi Basin 

Inflection 0.490 1.144 
50-Point 0.956 2.731 
Mirrored Spread 0.774 2.576 

 Missouri Basin 

Inflection 0.695 0.639 
50-Point 0.105 0.296 
Mirrored Spread 0.162 0.012 

 Pooled Basins 

Inflection 0.380 0.344 
50-Point 0.797 1.514 
Mirrored Spread 0.507 1.165 

Table 26b: Probability of t Values  Based on At-
Site Fits of the Pearson Type III and 
the Right Tail Normal Distributions to 
Observed Distributions 

Method 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 Upper Mississippi Basin 

Inflection 0.633 0.275 
50-Point 0.358 0.018 
Mirrored Spread 0.454 0.024 

 Missouri Basin 

Inflection 0.500 0.535 
50-Point 0.918 0.722 
Mirrored Spread 0.874 0.990 

 Pooled Basins 

Inflection 0.707 0.733 
50-Point 0.433 0.142 
Mirrored Spread 0.616 0.254 
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In no case is the null hypothesis, H0
˜ ξ ( ), rejected at probability level α ≤ 0.05 . Though 

on average, the differences in the estimates of the T = 50,100 -year floods yielded by the 

Pearson Type III and the Right-Tail Normal distribution are not statistically significant 

at probability level α ≤ 0.05 , the minimum differences in the fits to the observed 

distributions is dominated by the Right-Tail Normal distribution. 
 

Regional Goodness of Fit 

The regional values of ∆ PIII( ) and ∆ RTNi( ) conditioned on T = 50,100  are given in 

Tables 27a and 27b. 

 

 

 

Table 27a: Goodness of Fit per T = 50 − year  Flow Relative to Regional 
Sequences  of Annual  Peak Flows in Log Space  

River Skewness ∆ PIII( ) ∆ RTN( ) ∆ RTN( ) ∆ RTN( ) 
   Inflection 

Point 
50-Point Mirrored 

Spread 

 Upper Mississippi Basin 

Log Space -0.608 0.005 -0.001 0.000* 0.002 
Quasi-Log Space -0.563 0.025 -0.009 -0.000* 0.009 

 Missouri Basin 

Log Space -0.253 0.003 0.007 0.002* 0.003 
Quasi-Log Space -0.272 0.014 0.036 0.010* 0.015 

* Minimum Absolute Difference in Fit     

Table 27b: Goodness of Fit per T = 100 − year   FlowRelative to Regional 
Sequences  of Annual  Peak Flows in Log Space  

River Skewness ∆ PIII( ) ∆ RTN( ) ∆ RTN( ) ∆ RTN( ) 
   Inflection 

Point 
50-Point Mirrored 

Spread 

 Upper Mississippi Basin 

Log Space -0.608 0.015 0.007* -0.010 0.009 
Quasi-Log Space -0.563 0.082 0.045* -0.047 0.055 

 Missouri Basin 

Log Space -0.253 0.028 0.031 0.026* 0.027 
Quasi-Log Space -0.272 0.140 0.160 0.131* 0.137 

* Minimum Absolute Difference in Fit     
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The fits of the Pearson Type III distributions and the Right-Tail Normal distributions to 

the regional distributions are shown in Appendix L. The Right-Tail Normal distributions 

are fitted using the mirrored spread method to estimate the distribution’s parameters. 

 

The at-site differences in fits derived through regionalization in log space are given in 

Tables 28a and 28b, and derived through regionalization in quasi-log space are given in 

Tables 29a and 29b. 

 

 

Table 28a: Goodness of Fit per T = 50 − year  Flow Relative to At-Site 
Sequences  of Annual Peak Flows Derived through Regionalization 
in Log Space  

River Median ∆ PIII( ) ∆ RTN( ) ∆ RTN( ) ∆ RTN( ) 
   Inflection 

Point 
50-Point Mirrored 

Spread 

 Upper Mississippi Basin 

St. Paul 4.600 0.023 -0.005 0.005* 0.009 
Winona 4.956 0.025 -0.005 0.005* 0.009 
Dubuque 5.119 0.026 -0.005 0.005* 0.010 
Clinton 5.125 0.026 -0.005 0.005* 0.010 
Keokuk 5.252 0.026 -0.005 0.005* 0.011 
Hannibal 5.324 0.027 -0.005 0.005* 0.011 
St. Louis 5.694 0.028 -0.006 0.006* 0.011 

Average 5.153 0.026 -0.005 0.005 0.010 
Std. Deviation 0.336 0.002 0.000 0.000 0.001 
 Missouri Basin 

Sioux City 5.173 0.016 0.036 0.010* 0.016 
Omaha 5.182 0.016 0.036 0.010* 0.016 
Nebraska City 5.248 0.016 0.037 0.010* 0.016 
St. Joseph 5.239 0.016 0.037 0.010* 0.016 
Kansas City 5.329 0.016 0.037 0.011* 0.016 
Booneville 5.401 0.016 0.038 0.011* 0.016 
Hermann 5.484 0.016 0.038 0.0118 0.016 

Average 5.294 0.016 0.037 0.011 0.016 
Std. Deviation 0.116 0.000 0.001 0.000 0.000 

 Pooled Basins 

Average 5.223 0.021 0.016 0.008 0.013 
Std. Deviation 0.252 0.005 0.022 0.003 0.003 

* Minimum Absolute Difference in Fit     
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Table 28b: Goodness of Fit per 100 − year  Flow Relative to At-Site Sequences  
of Annual Peak Flows Derived through Regionalization in Log Space 

River Median ∆ PIII( ) ∆ RTN( ) ∆ RTN( ) ∆ RTN( ) 
   Inflection 

Point 
50-Point Mirrored 

Spread 

 Upper Mississippi Basin 

St. Paul 4.600 0.069 0.032* -0.046 0.041 
Winona 4.956 0.074 0.035* -0.050 0.045 
Dubuque 5.119 0.077 0.036* -0.051 0.046 
Clinton 5.125 0.077 0.036* -0.051 0.046 
Keokuk 5.252 0.079 0.037* -0.052 0.047 
Hannibal 5.324 0.080 0.037* -0.053 0.048 
St. Louis 5.694 0.085 0.040* -0.057 0.051 

Average 5.15 0.077 0.036 -0.052 0.046 
Std. Deviation 0.336 0.005 0.002 0.003 0.003 
 Missouri Basin 

Sioux City 5.173 0.145 0.160 0.134* 0.140 
Omaha 5.182 0.145 0.161 0.135* 0.140 
Nebraska City 5.248 0.147 0.163 0.136* 0.142 
St. Joseph 5.239 0.147 0.162 0.136* 0.142 
Kansas City 5.329 0.149 0.165 0.139* 0.144 
Booneville 5.401 0.151 0.167 0.140* 0.146 
Hermann 5.484 0.154 0.170 0.143* 0.148 

Average 5.294 0.148 0.164 0.138 0.143 
Std. Deviation 0.116 0.003 0.004 0.003 0.003 

 Pooled Basins 

Average 5.223 0.113 0.100 0.043 0.095 
Std. Deviation 0.252 0.037 0.066 0.098 0.050 

* Minimum Absolute Difference in Fit     
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Table 29a: Goodness of Fit per T = 50 − year  Flow Relative to At-Site 
Sequences  of Annual Peak Flows Derived through Regionalization 
in Quasi-Log Space  

River Median ∆ PIII( ) ∆ RTN( ) ∆ RTN( ) ∆ RTN( ) 
   Inflection 

Point 
50-Point Mirrored 

Spread 

 Upper Mississippi Basin 

St. Paul 4.600 0.115 -0.041 -0.005* 0.041 
Winona 4.956 0.124 -0.045 -0.005* 0.045 
Dubuque 5.119 0.128 -0.046 -0.005* 0.046 
Clinton 5.125 0.128 -0.046 -0.005* 0.046 
Keokuk 5.252 0.131 -0.047 -0.005* 0.047 
Hannibal 5.324 0.133 -0.048 -0.005* 0.048 
St. Louis 5.694 0.142 -0.051 -0.006* 0.051 

Average 5.153 0.129 -0.046 -0.005 0.046 
Std. Deviation 0.336 0.008 0.003 0.000 0.003 
 Missouri Basin 

Sioux City 5.173 0.072 0.186 0.052* 0.078 
Omaha 5.182 0.073 0.187 0.052* 0.078 
Nebraska City 5.248 0.073 0.189 0.052* 0.079 
St. Joseph 5.239 0.073 0.189 0.052* 0.079 
Kansas City 5.329 0.075 0.192 0.053* 0.080 
Booneville 5.401 0.076 0.194 0.054* 0.081 
Hermann 5.484 0.077 0.197 0.055* 0.082 

Average 5.294 0.074 0.191 0.053 0.079 
Std. Deviation 0.116 0.002 0.004 0.001 0.002 

 Pooled Basins 

Average 5.223 0.101 0.072 0.024 0.063 
Std. Deviation 0.252 0.029 0.123 0.030 0.017 

* Minimum Absolute Difference in Fit     
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On a regional basis, either in log space or quasi-log space, the Right-Tail Normal 

distribution provides a better fit to the regional distribution than the Pearson Type III 

distribution. Refer to Tables 27a and 27b above. Through regionalization in log space, 

the at-site fits are derived by multiplying the regional differences in fits by the at-site 

medians of the flows at the sites. Thus, the ranking of the regional differences in the fits 

is identical to the rankings of the derived at-site differences for any given site. Refer to 

Tables 27a, 28a and 28b above. Similarly, through regionalization in quasi-log space,  the 

ranking of the regional differences in the fits is identical to the rankings of the derived at-

site differences for any given site. Refer to Tables 27b, 29a and 29b above. 

 

Table 29b: Goodness of Fit per 100 − year  Flow Relative to At-Site Sequences  
of Annual Peak Flows Derived through Regionalization in Quasi-
Log Space  

River Median ∆ PIII( ) ∆ RTN( ) ∆ RTN( ) ∆ RTN( ) 
   Inflection 

Point 
50-Point Mirrored 

Spread 

 Upper Mississippi Basin 

St. Paul 4.600 0.377 0.207* -0.216 0.253 
Winona 4.956 0.406 0.223* -0.233 0.273 
Dubuque 5.119 0.420 0.230* -0.241 0.282 
Clinton 5.125 0.420 0.231* -0.241 0.282 
Keokuk 5.252 0.431 0.236* -0.247 0.289 
Hannibal 5.324 0.437 0.240* -0.250 0.293 
St. Louis 5.694 0.467 0.256* -0.268 0.313 

Average 5.153 0.423 0.232 -0.242 0.283 
Std. Deviation 0.336 0.028 0.015 0.016 0.018 
 Missouri Basin 

Sioux City 5.173 0.724 0.828 0.678* 0.709 
Omaha 5.182 0.725 0.829 0.679* 0.710 
Nebraska City 5.248 0.735 0.840 0.687* 0.719 
St. Joseph 5.239 0.733 0.838 0.686* 0.718 
Kansas City 5.329 0.746 0.853 0.698* 0.730 
Booneville 5.401 0.756 0.864 0.708* 0.740 
Hermann 5.484 0.768 0.877 0.718* 0.751 

Average 5.294 0.741 0.847 0.693 0.725 
Std. Deviation 0.116 0.016 0.019 0.015 0.016 

 Pooled Basins 

Average 5.223 0.582 0.539 0.226 0.504 
Std. Deviation 0.252 0.167 0.320 0.486 0.230 

* Minimum Absolute Difference in Fit     
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Assessment of Variances of Differences in Fits 

The F  values and their corresponding probabilities relating to the variances of the at-site 

differences in the fits of the Pearson Type III distribution and the Right-Tail Normal 

distribution derived through regionalization in log space and quasi-log space are given in 

30a and 30b. 

 

 

 

Table 30a: F Values Based on At-Site Fits of the Pearson Type III and the Right Tail 
Normal Distributions to Observed Distributions Derived through 
Regionalization in Log Space and Quasi-Log Space 

 Log Space  Quasi-Log Space 

Method 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 Upper Mississippi Basin 

Inflection 0.040 0.218  0.130 0.301 
50-Point 0.040 0.444 0.002 0.329 
Mirrored Spread 0.160 0.360 0.130 0.450 

 Missouri Basin 

Inflection 5.444 0.001 6.612 1.306 
50-Point 0.444 0.862 0.510 0.876 
Mirrored Spread 1.000 0.930 1.148 0.958 

 Pooled Basins 

Inflection 17.355 0.196 18.016 3.674 
50-Point 0.291 7.033 1.083 8.487 
Mirrored Spread 0.312 1.837 0.356 1.901 
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In neither log space or quasi log space is the null hypothesis, H0:ς 2 , for the Upper 

Mississippi basin and the Lower Missouri basin. However, if the basins are pooled, then 

the null hypothesis is rejected relative to certain methods of estimating the parameters of 

the Right-Tail Normal distribution. Rejecting the null hypothesis does not weaken the 

argument that in either log space or quasi-log space, the Right-Tail Normal distribution 

provides a better it to the regional distribution than the Pearson Type III distribution. 

Table 30b: Probability of F Values Based on At-Site Fits of the Pearson Type III and 
the Right Tail Normal Distributions to Observed Distributions Derived 
through Regionalization in Log Space and Quasi-Log Space 

 Log Space  Quasi-Log Space 

Method 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 Upper Mississippi Basin 

Inflection 0.999 0.957 0.987 0.915 
50-Point 0.999 0.827 1 0.899 
Mirrored Spread 0.979 0.880 0.987 0.823 

 Missouri Basin 

Inflection 0.029 0.999 0.018 0.377 
50-Point 0.827 0.569 0.783 0.562 
Mirrored Spread 0.500 0.534 0.436 0.520 

 Pooled Basins 

Inflection 0.000 0.997 0.000 0.013 
50-Point 0.983 0.001 0.444 0.000 
Mirrored Spread 0.978 0.143 0.963 0.130 
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Assessment of Means of Differences in Fits 

 

 

Table 31a: t Values Based on At-Site Fits of the Pearson Type III and the Right Tail 
Normal Distributions to Observed Distributions Derived through 
Regionalization in Log Space and Quasi-Log Space 

 Log Space  Quasi-Log Space 

Method 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 Upper Mississippi Basin 

Inflection 47.713 19.597 51.885 16.040 
50-Point 31.808 56.230 42.136 55.343 
Mirrored Spread 22.589 13.908 24.417 11.088 

 Missouri Basin 

Inflection 63.306 116.739 68.650 11.334 
50-Point 33.430 6.309 28.023 5.658 
Mirrored Spread 0 3.099 5.874 1.846 

 Pooled Basins 

Inflection 0.780 8.228 0.380 0.424 
50-Point 7.818 2.395 6.888 2.501 
Mirrored Spread 4.626 1.047 0.063 0.504 
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In both log space and quasi-log space, the null hypothesis is rejected for the Upper 

Mississippi basin and the Missouri basin. The differences in the means of the differences 

in the fits of the regional distribution by the Pearson Type III distribution and the Right-

Tail Normal distribution cannot be ascribed to chance. Thus, the argument that the 

Right-Tail Normal distribution provides a better fit to the regional distribution, and 

consequently to the at-site distributions derived through regionalization, than the 

Pearson Type III distribution is strengthen. If the basins are pooled, then the null 

hypothesis is not rejected with certain methods used to estimate the parameters of the 

Right-Tail Normal distribution. In any case, an argument can be made in favor of the 

Right-Tail Normal distribution over the Pearson Type III distribution. 

 

Table 31b: Probability of t Values Based on At-Site Fits of the Pearson Type III and 
the Right Tail Normal Distributions to Observed Distributions Derived 
through Regionalization in Log Space and Quasi-Log Space 

 Log Space  Quasi-Log Space 

Method 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 50-Year Peak 
Flow 

100-Year Peak 
Flow 

 Upper Mississippi Basin 

Inflection 0.000 0.000 0.000 0.000 
50-Point 0.000 0.000 0.000 0.000 
Mirrored Spread 0.000 0.000 0.000 0.000 

 Missouri Basin 

Inflection 0.000 0.000 0.000 0.000 
50-Point 0.000 0.000 0.000 0.000 
Mirrored Spread 1 0.009 0.000 0.009 

 Pooled Basins 

Inflection 0.433 0.000 0.410 0.675 
50-Point 0.000 0.024 0.000 0.019 
Mirrored Spread 0.000 0.143 0.017 0.230 
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Postscript 

Central to the above discussions of trend and persistence and of risk and uncertainty was 

the assumption iid assumption, the assumption that a sequence of n  annual flood flows 

is a realization of a sequence of n  independent and identically distributed random 

variables. An assessment of trend and persistence or of risk and uncertainty on a site by 

site basis, whether on at-site terms or on regionalized terms is not complete without some 

account of the covariance structure of the N  flow sequences used in the assessment. The 

covariance structure defines the structure of linear correlation among the flow sequences. 

In a large region, if N  is small and the sequence sites are widely dispersed, the 

covariance/correlation structure likely would not have a significant effect upon the 

assessment, except perhaps if all sites are on a single river course.  

 

Recently, Douglas et al (2000) took direct account of spatial correlation – 

covariance/correlation structure – in assessment of trends in floods and low flows. An 

account of the covariance/correlation structure general presumes a specific multivariate 

distribution. In most cases, it is presumed that the multivariate distribution is Normal  in 

either real space or log space. The assumption of normality provides greater depth and 

scope in hydrologic analyses than any other assumption of the multivariate distribution 

given the extensive development of the multivariate Normal distribution.  

 

The Right-Tail Normal distribution introduced above as a univariate distribution of 

annual floods can be generalized as a multivariate Right-Tail Normal distribution  to 

accommodate flood studies on a regional basis. Nonetheless, non-Normal multivariate 

distributions of annual floods and for other hydrologic phenomena, e.g. annual low 

floods, any arbitrary element of the spectrum of extreme flows, are important to 

hydrology. Various statistical techniques have been developed for generating variate 

values for bivariate distributions having specified marginal distributions. A technique 

developed by Johnson (1978) is presented in Appendix M. The technique is used to 

generate bivariate sequences of values having Pearson Type III, say in log space, and Log 

Pearson Type III, say in real space, marginal distributions. 

 

The assumption of normality has its advantages not only in dealing with the spatial 

covariance/correlation structure, but also in dealing with the temporal 

covariance/correlation structure, i.e. in time series analyses. 
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The objectives of water resources development, or of any developmental enterprize, are 

future expectations, more specifically future economic expectations. Because the future 

cannot be totally comprehended, the decisions to effect future expectations are almost 

always made in a state of uncertainty. The more distant the future is from the present, 

the less the future will mirror the past. The uncertainty that arises from the future not 

mirroring the past is referred to by Davidson (1991) as true uncertainty. It is problematic 

as to whether or not true uncertainty may be substituted for by probability.  

 

The matter of true uncertainty has not been explored in the field of water resources. It 

can be argued that the definition of uncertain in the Principles and Guidelines (U.S. 

Water Resources Council: 1983) is in effect a definition of true uncertainty. However, 

the wording does not make it clear that that is indeed the case. The Council states that 

uncertainty is an integral part of water resources development, implying that uncertain 

must be addressed in the course of water resources investigation. Even if the Council’s 

definition of uncertainty is a definition of true uncertainty, then uncertainty (Council’s 

definition) must be measured by a metric other than probability. 

 

It remains to be seen if true uncertainty underlines the development of water resources, 

and if so how true uncertainty is to be measured. Is Shackle’s (1949) index of surprise a 

meaningful measure of true uncertainty in water resources investigation? Is that that the 

uncertainty in water resources investigation is not true uncertainty, but uncertainty that 

may be substituted for by probability? 
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