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2 Model Description

Governing Equations

Fluid motion is modeled using the 2-D unsteady shallow-water equations.  The
shallow-water (or long-wave) equations are a result of the vertical integration of
the equations of mass and momentum conservation for incompressible flow under
the hydrostatic pressure assumption.  This assumption implies that vertical accel-
erations are negligible when compared to the horizontal accelerations and the
acceleration due to gravity.  The vertical accelerations are small when the charac-
teristic wavelength is long relative to the depth, which is why these equations are
referred to as long-wave or shallow-water equations.  The drawdown wave is on
the order of the length of the barge train, which is much greater than the channel
depth.  Vertical accelerations, which result from streamline curvature, reduce the
celerity of a gravity wave by the ratio (Whitham 1974):
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where h is the flow depth and L is the wavelength.  For the test cases presented in
this report, the wavelength is approximately 10 m and the generated wave (draw-
down) is about 0.2 m.  Therefore, K equals 0.9974, which means that the com-
puted wave speed is only 0.26 percent larger than wave speeds in the real system.
Near the vessel the horizontal accelerations are greater, which in turn suggests that
pressure gradients and vertical accelerations are more important.  Although non-
negligible vertical accelerations are present in the immediate vicinity of the vessel,
the hydrostatic assumption is reasonable for the flow at some distance away from
the vessel, which is the interest in this study.

The dependent variables of the fluid motion are defined by the flow depth h,
the x-component of unit discharge p, and the y-component of unit discharge q.
These dependent variables are functions of the two space directions x and y and
time t.  If the fluid pressure at the surface is included while the free-surface
stresses are neglected, the shallow-water equations are given as (Abbott 1979):
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and
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g = acceleration due to gravity

D = fluid density

z0 = channel bed elevation

P = pressure at the water surface

n = Manning’s roughness coefficient

Co = dimensional constant (Co = 1 for SI units and Co = 1.486 for non-SI
units)
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And the F terms are the Reynolds stresses due to turbulence, where the first
subscript indicates the direction, and the second indicates the face on which the
stress acts.  The pressure at the free surface is zero, and the pressure at the vessel
location is related to the vessel draft as:

dgP ρ= (7)

where d is the vessel draft.  The Reynolds stresses are determined using the
Boussinesq approach relating stress to the gradient in the mean currents:









∂
∂

νρ=σ
x
u

txx 2 (8)









∂
∂

νρ=σ
y
v

txx 2 (9)

and
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where

<t = kinematic eddy viscosity (which varies spatially)

u = p/h is the depth-averaged x-component of velocity

v = q/h is the depth-averaged y-component of velocity

Values of the eddy viscosity are determined empirically as a function of the local
flow variables (Rodi 1980; Chapman and Kuo 1985):
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where C is a coefficient that varies between 0.1 and 1.0.

Vessel Representation

The coordinates of the vessel center S are moved during each time-step in
accordance with the vessel sailing speed and direction as:

SSS ∆+= 0 (12)

where S0 is the initial location of the vessel corners, and )S is computed as:
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where a is the specified vessel acceleration, and ts is the time at which the vessel
reaches a constant velocity (ats).

After the vessel center location is determined, the vessel corner coordinates are
calculated from the vessel length and width.  The induced pressure field resulting
from the vessel draft is applied to every node within the vessel boundary, as illu-
strated in Figure 1.  The computational mesh is constructed to apply pressure gra-
dients across the bow, stern, and each side boundary to maintain the appropriate
blockage area (vessel cross-sectional area).

Numerical Computational Scheme

The finite element approach used is a Petrov-Galerkin formulation, which is a
combination of the Galerkin test function and a non-Galerkin component to control
oscillations (Berger and Stockstill 1995).
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where the subscript e identifies a particular element that is part of the domain S,
the subscript i indicates a particular test function, and the ~ symbolizes a discrete

value of the variable.  The finite element approximation U
~

 for the solution of the
governing equations is given as:
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where Nj are the bilinear basis functions and Uj are the nodal values of the solu-
tion.  The Petrov-Galerkin test function, which consists of a combination of even
and odd functions, is written as:

iii N NIN ′+=* (16)

where N is identical to the basis function, I is the identity matrix, and:
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Figure 1. Discrete representation of a vessel on the numerical model computational mesh

is the stabilizing component added to the Galerkin test function.  Here, $ is a
dimensionless number between 0 and 0.5, )x and )y are the representative

element lengths (Katopodes 1986), and Â and B̂ are functions of the flow
characteristics (Berger and Stockstill 1995; Berger 1993).

To facilitate the specification of boundary conditions, the weak form of the
equations is developed using integration by parts.  The weak form of the equations
is given as:
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where (nx,ny) = n̂  is the outward unit vector normal to the boundary eΓ  , the

symbol ~ has been omitted for clarity, and the variables are understood to be
discrete values.  The natural boundary conditions given in the weak statement are
applied to the sidewalls to enforce no mass or momentum flux through these
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boundaries.  A partial slip condition is implemented at these boundaries, which
allows a velocity along the wall but imposes a friction stress.

Difference equations are used to approximate the temporal derivative of the
set of variables Uj:
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where j is the nodal location and k is the time-step.  An " equal to 1.0 results in a
first-order backward difference approximation, and an " equal to 2.0 results in a
second-order backward difference approximation to the temporal derivative.  This
implicit description of the nonlinear equations is solved using the Newton-Raphson
method of iteration.  The derivatives comprising the Newton-Raphson Jacobian
are determined analytically, and the Jacobian is updated at every iteration.


