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Summary

In dealing with floods, federal agencies determine flood frequencies via the guidelines set forth in Bulletin 17-B. The bulletin calls for the use of the Log-Pearson Type III distribution unless there is sufficient reason for using another distribution. Under the criteria of “best fit” in conjunction with the assumption that floods are independently and identically distributed (iid), it is difficult to rationalize the use of an alternative to the Log-Pearson distribution. Difficulty is not due to any hydrologic merit of the Log-Pearson over some other distributions. Had some other distribution been adopted, one similar to the Log-Pearson in terms of number of parameters and stretchiness of the upper tail, e.g. the Generalized Extreme Value distribution, it would be difficult to rationalize the use of the Log-Pearson or some other distribution under the criteria of “best fit” coupled with the iid assumption. 

Concerns that climate change is forcing hydrologic change prompts questioning of the iid assumption underlying flood frequency analysis. If indeed climate change calls for rejecting the iid assumption, then it is not clear that a “simple adjustment” to the guidelines of Bulletin 17-B can be made, such that the Log-Pearson distribution remains the distribution of choice. If the consequence of climate change is nonstationary hydrology that manifests itself as positive or negative trends in flood sequences, then flood frequency analysis will need to take into account the “expected” form and duration of the trend given the “expected” time of inception of the trend.

Flood sequences in the Upper Mississippi and Missouri basins were examined for trends through an evolutionary account of the flood sequences. The evolutionary account looks at the sequences in two ways. The first way is forward, from beginning to present, to examine the sequences for trend as they increase in length. The second way is backward, from present to beginning, to examine the sequences for trends conditioned on the sequences having started at progressively earlier dates. The evolutionary account suggests there is no consistent temporal pattern to the manifestation of trends. Trends hold for some segments of the sequences, but not for other segments. In effect, trends “come” and “go”. The pattern of “trend-no trend” suggest that the pattern may be a reflection of oscillatory movements of varying frequency and amplitude. This view of the “trend-no trend” pattern suggests that flood sequences may be viewed as realizations of stationary persistent processes. Accepting flood sequences as realizations of stationary persistent processes effectively rejects the iid assumption underlying flood frequency analysis. The price of acceptance is difficulty in using the Log-Pearson distribution. The distribution does not naturally accommodate persistence, even in the form of Markovian persistence. Though the Log-Pearson distribution can be gerry-rigged to accommodate stationary persistence, other distributions present less difficulty. Difficulties would be faced in seeking to accommodate stationary persistence with the Generalized Extreme Value distribution. The Log-Normal distribution serves to illustrate difficulties in dealing with stationary persistence.

The assessment of trend through the evolutionary account of the sequences is limited by the content of information yielded by the observed sequences–7 in the Missouri basin and 13 in the Upper Mississippi basin. The limitation derives from the correlations between the sequence flows. If the sequences were (linearly) independent of one another, then the information content would be that yielded by each of the sequences. The effect of correlation is redundancy in information: in effect the information yielded by one sequence is “repeated” in the information yielded by another sequence. In general, 20 sequences constitutes a small sample. A moderate degree of correlation effectively reduces the size of sample.

The sites in the Missouri basin and for the sites in the lower Upper Mississippi basins, the drainage areas are large, each exceeding 100,000 mi2.. The question whether or not drainage area, particularly large drainage areas affect flood frequency analysis is briefly addressed. With the data at hand, there appears to be a statistically significant relation between the logs of skew and the logs of area. The relation implies that  skew diminishes with an increase in area. An analytical assessment suggests that the distribution of flows approaches the Normal distribution as area becomes extremely large. Even so, the skew-area relation does not imply any fundamental difficulty in conducting flood frequency analysis. To pursue the matter further would require the acquisition of a larger data base with attention to the content of information yielded by the data base. 
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