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Executive Summary

A recent National Research Council study observed that climate has changed, is changing and will continue to do so (NRC, 1998). As our understanding of these processes improves, we should consider how water resources planning and flood risk analysis might evolve. This paper considers flood risk assessment in the upper Mississippi River Basin where statistically significant trends in the magnitude of flood peaks have been documented. These results demonstrate that the traditional time-independent flood risk model is incorrect and a more sophisticated model may be appropriate. This paper considers other models that might be adopted. Four alternative forecasts are developed using reasonable models for climate variability. Estimates of average flood risk and the economic equivalent risk are compared.

Models are considered that ignore variation in flood risk over time, that include a linear trend in flood risk, and that describe variations in flood risk with a stationary time series model with significant long-term persistence. This investigation demonstrated that stationary time series models are very flexible and produce a reasonable interpretation of historical records and a corresponding flood risk forecast. Stationary time series allow risk to vary over time but preserve the assumption that hydrology is stationary in the long run. When stationary time series models are used for risk forecasting, the predicted risk returns to the unconditional long-run average as the forecasting horizon increases. The resulting variation in flood risk is likely to affect flood risk management if decision parameters can be adjusted on a year-to-year basis; however, in our example, variations in flood risk are likely to have disappeared before major construction projects can be designed, authorized and completed. Adoption of stationary stochastic models with significant persistence had relatively little impact on the precision of the 100-year flood quantile describing long-term average flood risk, whereas a large impact was observed on the precision of the estimated mean flood. Because statistical tests for time-series model selection have little power with the available record lengths (~100 years), long-term global and regional data (whether it be dendrohydrologic reconstruction, ice cores, sedimentation rates or paleostage indicators) is needed to identify reasonable stationary time series for maximum annual floods. 
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1 Introduction

“The evidence of natural variation in the climate system - which was once assumed to be relatively stable - clearly reveals that climate has changed, is changing and will continue to do so with or without anthropogenic influences… Furthermore, compounding the inevitable hazard of natural climate variations is the potential for long-term anthropogenic climate alteration” (NRC 1998). As our understanding and appreciation of the complexity of the global climate system and the hydrologic cycle improves, it should also be necessary for the models used in water resources planning and flood risk analysis to evolve as well (Stakhiv, 1998; Schilling and Stakhiv, 1998; Stedinger and Crainiceanu, 2001). This paper considers flood risk management in the upper Mississippi River Basin where statistically significant trends in the magnitude of flood peaks have been documented (Olsen et al., 1999; Matalas and Olsen, 2001). These results suggest that the assumptions of the traditional time-independent flood risk model may not be correct and more sophisticated models may be appropriate. This paper considers other models that might be considered and illustrates their use and the resulting differences in flood risk and the precision of flood quantiles. 

2 Literature on Hydrologic Change

Research has focused on understanding the nature of likely changes in flood risk across the United States and in the Midwest. Olsen et al. (1999) provide a review of these efforts, showing that there is evidence of a historical trend of increasing temperatures and precipitation in the Upper Midwest since 1900. For example, much of the Midwest showed an increase of 10% to 20% in annual precipitation (Karl et al., 1996). Average annual snow cover in the region may have decreased in the past twenty years partly due to higher temperatures (Karl et al., 1993). Less snow cover may reduce the severity of spring snowmelt floods. 

Karl et al. (1995) reported that the frequency of heavy rainfall (defined as more than 2 inches per day) might be increasing. Angel and Huff (1997) also found an approximately 20% increase from 1901 to 1994 in the number of daily precipitation events of 2 inches or more. They observed that between the periods 1901-1947 and 1948-94, the number of stations with a statistically significant increase in daily, 2-, 3-, 5- and 10-day annual maximum rainfall was greater than the number of stations with significant decreases by a ratio of 5 to 1.  In another analysis, Karl and Knight (1998) showed an annual increase in the upper 10 percentile of daily precipitation amounts in the Upper Mississippi region, including increases in the spring, summer, and autumn, but a decrease in the winter.  In the Missouri River region, there was a smaller annual increase, increases in the spring and summer, and decreases in the autumn and winter. Timing is important because extreme rainfall in the late summer or autumn is less likely to cause flooding due to lower antecedent soil moisture. In general, the relationship between precipitation and runoff is not a simple one.

Several studies have addressed trends in flood peaks in the watersheds of the Mississippi River.  Lins and Slack (1998) provide a national analysis. Potter (1991) shows that since 1951, flood peaks have decreased in some small agricultural catchments in Wisconsin. Knox (1983) discusses flood risk at St. Paul from 1860 to 1981. He suggests a period from 1860 through 1895 with high flood risk, a period from 1896-1949 with depressed flood risk, and finally a period from 1950-1981 when flood risks had the highest level over the period.  Knapp (1994) observed that the Upper Mississippi River basin has experienced above-average precipitation since 1965 and this has increased stream flows. Analysis of a number of climate variables by Karl et al. (1996), Angel and Huff (1997), Lettenmaier et al. (1994) and Karl and Knight (1998) suggest that positive trends may be present in hydrologic series in the Upper Mississippi River Basin. Douglas et al. (2000) illustrate the importance of considering cross-correlation if the results from different sites in a region are considered jointly when trying to demonstrate the existence of regional trends.

A number of studies have addressed the long-term variability in maximum flood flows from different points of view. Walker and Stedinger (2000) showed that the arrival rate of flood events is statistically significant in the Mid-Atlantic and Southeast Gulf-Coast using statistical measures of flood clustering (See also Walker, 1999). On the other hand, Vogel et al. (2001) documented that the average number of record-breaking flood events is not statistically significant for all regions of the U.S. when spatial correlation is accounted for. However, an analysis of the number of record-breaking events may not be sensitive to whether floods occur in clusters, which relates mostly to the timing between flood events.

3 Models and Climate

Standard statistical significance tests for trend show that the null hypothesis of independent and identically distributed (i.i.d) annual maximum floods is rejected at key sites in the upper Mississippi basin. This does not mean that the alternative hypothesis (a model with a linear trend and i.i.d. errors) is automatically correct. The deterministic trend could appear to be significant because of long-term stationary persistence in the flood record. Reasonable questions are: what statistical model best describes variations in flood risk over time and how sophisticated a model  is needed for risk assessment that would support flood-risk management? In this paper risk generally refers to the probability an annual flood exceeds some critical threshold, though other definitions of risk are possible. 

Matalas (1997) discusses implications of climate change for stochastic hydrologic modeling. He argues that the assumption of stationarity should not be dismissed lightly. Stationary models provide a rational and useful framework for projecting hydrologic risk into the future. Seldom can we determine if observed increases (or decreases) represent real physical trends, or whether they are only apparent trends. Nor is it clear if real trends would be sustained over the planning period of interest. Apparent trends are likely to be the result of persistence in stationary models that result in significant variability in flood risk from decade-to-decade (Matalas and Olsen, 2001).

Statistical models, like all theoretical models, are not perfect descriptions of nature. Seldom is a statistical model exactly correct, and even if it were correct we would not know it. It is up to engineers and scientists to select statistical models that are useful and appropriate for a given situation. If scientists see a flood record at a particular moment in time, they can choose among a variety of statistical models using their hydrologic experience, and available statistical and hydrologic science. They hope that the processes governing the distributions of floods will not change in any important ways over the forecasting period. Because there is more and more evidence against the i.i.d. hypothesis for floods, it is time for alternative models to be considered seriously.

This paper considers models that incorporate possible trends in the mean, and models that include persistence in the flood process. Stationary persistence may either increase or decrease flood risk in the short term; but in the longer term, flood risk will best be approximated by the historical average. On the other hand, trends in a non-stationary model will increase or decrease the estimates of flood risk indefinitely. 

The main objectives of this investigation are to consider:

1. What models can be used to describe flood risk if climate is variable.

2. How flood risk might be forecasted over a 25-50 year planning period.

3. What errors are made by assuming constant flood risk.

4. How likely variation in hydrologic risk would effect flood risk assessment and flood management.

5. How climate variability affects the precision of flood risk estimators.

The engineering challenge may be cast this way. Given a 30-70 year flood record, one wishes to design a system where the critical risk is 1:20 to 1:400 per year knowing that long-life investments (25-50 years) and flood zones are not easily revised. Moreover climate is variable from decade-to-decade over the period-of-record and the design horizon. What is the appropriate planning and decision-making paradigm in such a situation? Should risk be modeled as being constant, and if not, how should it be projected over the planning period when making economic investment decisions? (See also Frederick et al. 1997; Lane et al., 1999). 

4 Climate Variability and the Upper Mississippi River

Flood risk management for the Mississippi and other rivers is important because of the major human and economic impacts caused by floods (IFMRC, 1994). The usual distribution used to describe the maximum annual flood series is a Log-Pearson type 3 distribution assuming independent identically distributed (i.i.d.) observations. Olsen et al. (1999) report statistically significant positive trends for the maximum annual flood at several locations on the upper Mississippi and Missouri rivers. Matalas and Olsen (2001) show that most gages in the basin show positive trends and persistence in low and mean flows, with the signal much diminished when shorter-duration high flows are considered. One possible explanation is that these trends really exist during the record period. Another explanation is that these trends appear because of stationary persistence in the recorded flood series. With the current record length it is very difficult to discriminate between these two scenarios. In any case, the evidence calls for investigation of the appropriateness of the i.i.d. assumption for maximum annual floods. The following analysis assumes that the logarithms of the flows are adequately described by a normal distribution, as appears to be the case. (See also Olsen et al., 1999, Figure 8.)

Consider a Log-Normal with linear-trend flood risk model:
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 is the record length. The parameters of this model were estimated for three different sites: Hermann on the Mississippi river, Hannibal on the Mississippi river above the confluence with Missouri river and St. Louis. The computed levels of significance (p-values for a two-sided t-test) of the hypothesis
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are reported in Table 1. The results are based upon a recent data set constructed for the basin by the U.S. Army Corps of Engineers for their ongoing frequency studies for the 1898-1998 period (D. Goldman, Hydrological Engineering Center, personal communication, 2000). This data set has several changes from that employed by Olsen et al. (1999). With the available records there is strong statistical evidence against the i.i.d. Log-Normal hypothesis for the distribution of the annual floods in the Mississippi basin. Thus this paper considers the following questions:

a. How might this lack of independence be incorporated into flood risk assessment and project design?

b. Would the new risk model make a difference in design and planning decisions?

Table 1. Statistical significance of the log-linear trend model

	Site
	Slope 
[image: image11.wmf]l


	Level of significance*

	Hermann
	0.0035
	0.7%

	Hannibal
	0.0047
	0.01%

	St. Louis
	0.0033
	0.2%


*p-value for 2-sided t-test for no trend

5 Statistical Models of Climate Variability

To study the impact of different representations of climate variability on flood risk assessment and project evaluation, this paper considers 3 reasonable models that can forecast flood risk.

5.1 Log-Normal i.i.d. Model (LN i.i.d.)

This model assumes that the maximum annual floods 
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This is a traditional model used for flood risk management. The Federal guidelines generally recommend a Log-Pearson type 3 distribution (IACWD, 1982), which for a log-space skew of zero simplifies to a Log-Normal distribution (Stedinger et al., 1993). A zero skew was adequate in this instance and simplified many of the calculations with this model. 

5.2 Log-Normal Trend Model (LN Trend)

This model assumes that the maximum annual floods 
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 have a lognormal distribution around a linear trend, so that 
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 is the record length.

In section 4 the i.i.d. hypothesis was rejected. From those results we cannot conclude that the alternative is true, but a Log-Normal trend model is a reasonable alternative that is the basis of the test results reported in Table 1. This model represents the non-i.i.d. hypothesis by a trend. The practical problem posed by this model is whether the trend can reasonably be extrapolated beyond the period of record.

5.3 Log-Normal ARMA Model  (LN ARMA)

This model assumes that the maximum annual floods 
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 are generated by a stationary low-order Autoregressive Moving-Average process ARMA(p,q) (Box et al., 1994) for the log-flood series:
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This model explains the observed upward trend as variability due to persistence in a stationary time series. This modeling approach is particularly attractive because it preserves the assumption of stationarity in the long run.

5.4 Model inference 

Table 2 reports the estimated values of the parameters for the models discussed in the previous section for the Hannibal gauge record. These values are used in the subsequent analysis. Table 2 includes two low-order autoregressive moving-average (ARMA) models. As shown in the Appendix, the Akaike Information Criterion (AIC) model selection criterion pointed to an ARMA(1,1) model as the most appropriate ARMA model for the replicated Hannibal series. To illustrate what would happen with an ARMA model incorporating even more persistence, Table 2 includes an ARMA(2,1) model with method-of-moments (Yule-Walker) parameter estimates. The appendix provides additional details.

Table 2. Log-space model parameter estimates for Hannibal record

	LN i.i.d.
	µ =12.25
	
	=0.362

	LN Trend
	µ =12.25
	
[image: image22.wmf]l

=0.0047
	=0.339

	LN ARMA(1,1)
	µ =12.25
	  =0.688
	=0.362

	LN ARMA(2,1)
	µ =12.25
	 =0.843
	=0.362


The parameter µ is the overall mean for the stationary models (LN i.i.d. and LN ARMA) and the location parameter for the non-stationary model (LN Trend). Here the parameter  of the LN ARMA model is the largest root in absolute value of the AR polynomial from the ARMA structure. This parameter is the rate at which the forecasts return to the unconditional mean of the process. For the ARMA(1,1) model the conditional forecast for h+1 steps ahead is
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for h>0. Finally  is the standard deviation for all three models. 

In Table 2 the LN Trend model has a smaller standard deviation  than the other models. This smaller standard error results because of the variation explained by the slope parameter 
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 of the trend. Because of the time centering in the LN Trend model, the location parameter µ is the same for all 3 models. Similarly, the estimated variance of the process is the same for the stationary models: LN i.i.d., LN ARMA(1,1) and LN ARMA(2,1). 

6 Risk Forecasts

All three risk models described in section 5 can generate forecasts of the distribution of floods in different years of a planning period. Given a record length 
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 and a forecast horizon 
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, the risk forecasts would have the forms described below. These will be considered as mutually exclusive alternatives in the analysis that follows. However, new risk and uncertainty procedures developed by the US Army Corps of Engineers (1992ab, 1994, 1996), and more general procedures employed by others (Hobbs et al. 1997; Chao et al. 1999) would allow a more sophisticated risk-based treatment of the decision problem. There has for many years been an ongoing discussion of how to address uncertainty in flood risk estimates within the planning process for flood-risk management projects (Beard, 1978; Stedinger, 1997; Al-Futaisi and Stedinger, 1999; NRC, 2000). Climate variability reflects one more source of uncertainty in flood risk assessment.

6.1 Log-Normal i.i.d. Model

Forecasting is very simple with this model because the risk is independent of time. Thus the forecasted distribution of risk is 
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The risk of exceeding  a given threshold 
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where 
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 is the cumulative distribution function of the standard normal distribution. The exceedance probability of a given threshold 
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 is independent of the forecast horizon 
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6.2 Log-Normal Trend Model

With this model the forecasted distribution of risk is described by



[image: image34.wmf](

)

2

),

(

*

~

)

log(

s

l

m

t

h

T

N

Q

h

T

-

+

+

+

.
(6)

The risk of exceeding a threshold 
[image: image35.wmf]0

q

 is



[image: image36.wmf](

)

÷

ø

ö

ç

è

æ

-

-

-

-

F

-

=

s

l

l

m

h

T

q

h

p

TC

1

)

2

/

(

)

log(

1

)

(

0

.
(7)

If 
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 is an increasing function of 
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. From a practical view point, one might not assume that the trend in this model continues indefinitely. Thus a second approach is to assume that the risk will remain constant over the design period at the level of the last year in the record. In this case the forecasted distribution of risk becomes
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so that the risk of exceeding a threshold 
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 over the forecast period is a constant given by
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6.3 Log-Normal ARMA Model  

With this model the forecasted distribution of risk is described by
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Here 
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 are respectively the conditional mean and conditional variance of the forecasts given the data up to year T and for an h-step ahead forecast given the assumed ARMA(p,q) process for the deviations 
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The probability of exceeding a threshold 
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With this model the forecasted risk is not constant. However, because of the stationarity assumption, the conditional mean of the forecasts returns to the unconditional mean, 
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 this risk distribution returns to that of the LN i.i.d. model. However for a shorter forecasting horizon the results generally differ. 

This model is realistic for climate variability and risk forecasting because it connects current risk levels and recent variations in flood risk with their long-term unconditional distributions. The rate at which risks return to the unconditional distribution depends upon the estimated parameters of the ARMA model.

Table 3 summarizes the flood risk models and the corresponding risk forecasting. TC and TS stand for trend continues (TC) over the planning period, and trend stops (TS) at the 1998 level, so that risk remains constant at the 1998 level over the subsequent planning period.

Table 3. Flood Risk Forecasts Considered

	MODELS

	Log-Normal i.i.d.
	Log-Normal Trend
	Log-Normal ARMA

	Constant
	TC:

Projected trend continues with constant variance
	TS:

Projected trend stops at the level projected for 1998
	Conditional mean and variance


7 Risk Forecasts for the Upper Mississippi

Section 5 introduced three models of flood risk: one that assumed risk was constant and two that allowed for changes in flood risk over time. Section 6 described how those three models could be used to forecast risk over a planning horizon. This section shows what those forecasts would look like for the flood records at Hannibal and St. Louis.

Figure 1 shows the story for the Hannibal record, which extends from 1898 to 1998. The figure shows the original flood series and its mean, as well as the linear variation in the mean represented by the LN Trend model and its projection over the 1999-2030 period. Also included for the 1898 to 1998 period is the one-step ahead conditional ARMA(2,1) mean 
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 for the flood series given what has come before, and the conditional mean for the 1999-2030 period, given what had occurred up until 1998. As can be seen, the ARMA model conditional mean forecast decays to the long-term mean after a decade or so.

Plotted on the figure for each of the models is the flood threshold with an exceedance probability of 2% for each year. For the LN i.i.d. model this threshold is a straight horizontal line that was almost exceeded in 1972, and was exceeded by the 1993 event. For the LN Trend model the 2% exceedance threshold is a straight line with a positive slope. The projection of flood risk over the 1999-2030 period with the LN Trend model is either a continuation of that trend or a constant at the 1998 level. Both of these projections of the mean and the corresponding 2% exceedance probability threshold are shown in Figure 1.

Finally, Figure 1 shows the projection of the 2% exceedance probability threshold obtained with the ARMA model. As with the ARMA projection of the mean, the forecast of the 2% exceedance threshold decays to the long-run value after a decade or so.

The risk and economic analysis in section 10 employs the 100-year flood as a base event. The 50-year flood is employed here because it is not so rare and in expectation should be exceeded on average twice during a 100-year historical record.

Among all three models, the LN i.i.d. model predicts the lowest risk levels over the design period. The LN ARMA(2,1) model forecasts flood risk as an average of the long-run unconditional risk and the risk in the last years of record. Because the last years of record at Hannibal experienced several large floods, the predicted annual flood tends to be much higher than the long-run unconditional mean. The LN ARMA(2,1) model is very responsive to the observed values at the end of the record. It would predict lower risks than the LN i.i.d. model if the last years of record experienced only smaller floods. 

The Log-Normal model with the assumption that the trend continues, LN Trend/TC, includes the statistically significant positive trend (
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 would converge eventually to 1, as follows from equation (7). Because 
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 is small, this happens slowly and for the design period (30 years) the results may be reasonable. This model predicts the highest risk over the planning horizon. 

An intermediate approach is obtained using the Log-Normal with trend model and then holding the risk equal to the risk of the last year of record: LN Trend/TS. In our example, this approach predicts lower flooding risks than the LN Trend/TC model, but higher risk levels than the LN i.i.d. and LN ARMA models.

Figure 2 shows the same analysis for St. Louis. The results are basically the same as in Figure 1, except not as severe. 

Figure 3 shows how the forecasts for Hannibal would look immediately after the 1993 event, which is the largest flood of record. The 1994 risk forecast for the ARMA model is now the largest risk forecast of any model for that year. 

Figure 4 shows how the analysis would look like if the observed history were reversed (or run backwards), so that the small floods during the 1898-1905 period were at the end of the record. In this case the LN i.i.d. model gives the highest forecasted risk and the LN Trend model gives the lowest forecasted risk. This shows what would happen if the end of a flood record was a period of unusually small floods.

It should not be a surprise, but Figures 1-4 show that different models and forecasting schemes do indeed produce different forecasts. The next section considers the precision of the quantile estimators. Section 9 considers an alternative forecasting scheme that is often proposed. Section 10 looks more carefully at just how different the results are.
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Figure 1. Mean and 50-year Flood levels over historical record and planning period, for Hannibal record using three flood risk models

(
:
Flood record, mean and 2% flood level for the LN i.i.d. model.

(((
:
Projected 2% flood level for LN Trend model with TC
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Projected 2% flood level for LN Trend model with TS
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One step ahead forecast for the ARMA(2,1) model 
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:
Forecast of the mean and 2% flood level with ARMA(2,1) model 
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Figure 2. Mean and 50-year Flood levels over historical record and planning period, for St. Louis for three models (Symbols have same meaning as in Figure 1)
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Figure 3. Mean and 50-year Flood levels over historical record and planning period for Hannibal if historical record ends in 1993 (Symbols have same meaning as in Figure 1)
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Figure 4. Mean and 50-year Flood levels over historical record and planning period for Hannibal showing the impact of small floods at the end of a record (Symbols have same meaning as in Figure 1)

8 Precision of Flood Quantile Estimators

A consequence of variability of flood risk over time is a decrease in the precision of estimators of the mean flood and of flood quantiles. This is illustrated here using the standard error and the effective record length (ERL) of each estimator. The effective record length in this case describes the precision of a flood quantile in terms of the number of years of record required with an i.i.d. sample to obtain the same estimation precision. Thus, if the standard error of a quantile estimator from T observations drawn from model M is SE(M), the effective record length can be computed using 
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where SE(LN i.i.d.) is the standard error that would be obtained with T independent and identically distributed observations. 

The precision of the mean and quantile estimators for the LN Trend model is developed in the Appendix. Stedinger (1983) provides a discussion of quantile precisions for the LN i.i.d. model; for the ARMA models, the precision of the estimators of the mean and variance must be corrected for the correlation among the observed floods as described in Loucks et al. (1981, appendix 3C). The autocorrelation function was estimated using the estimated parameters of the ARMA models (Box et al., 1994). 

Table 4. Mean and 100-year flood estimates (natural logarithms)
	
	Mean
	100-Year Flood

	
	Value
	St. error
	ERL
	Value
	St. error
	ERL

	LN i.i.d.
	12.25
	0.036
	101
	13.10
	0.070
	101

	LN Trend 1948
	12.25
	0.034
	113
	13.04
	0.065
	117

	LN Trend 1998
	12.49
	0.067
	29
	13.28
	0.087
	65

	LN Trend 2048
	12.72
	0.120
	9
	13.51
	0.133
	28

	LN ARMA(1,1)
	12.25
	0.061
	35
	13.10
	0.092
	58

	LN ARMA(2,1)
	12.25
	0.070
	27
	13.10
	0.098
	52


Table 4 reports the standard error and ERL for the mean and the 100-year flood estimators for the models discussed in section 5. Table 4 reveals that for the LN Trend model the standard error of the 100-year flood estimator can be either smaller or greater than in the case of LN i.i.d. depending on the point in time for which quantile estimators are computed. This happens because of the extra variability in the estimated slope parameter. For example the standard error for the 100-year flood estimator using the LN Trend model for year 1948 is 0.065, slightly smaller than 0.070, which is the standard error of the 100-year flood obtained by employing the LN i.i.d. This happens because some of the randomness in the LN i.i.d. model was explained by the deterministic trend. However for 1998 the standard error equal to 0.087 for the 100-year flood estimator is larger for the LN Trend model because of the uncertainty in the estimated slope parameter .

On the other hand, as was expected, if floods are drawn from the LN ARMA model, the standard errors of the mean and of the 100-year flood estimators are larger than for the LN i.i.d model because of the increased persistence in flood peaks. The impact is greater on the precision of the mean than on the precision of 100-year flood estimator, as illustrated most clearly by the effective record lengths. The loss of precision in the mean is incredible.
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Figure 5. The long-term 100-year flood and its 95% confidence intervals for the LN i.i.d., LN ARMA(1,1)  and LN ARMA(2,1)  models are compared with the values obtained using the LN Trend/TC model when 100-year flood estimates are made for 1948, 1998 and 2048.
Figure 5 shows clearly the impact of different models on the precision of the 100-year flood estimates. While the LN i.i.d. and LN ARMA models give the same estimates of the long-term 100-year flood, the precision of these estimates is not the same. The 95% asymptotic confidence interval for the 100-year flood provided by the LN ARMA model is wider than the confidence interval provided by the LN i.i.d. model. More persistence in the time series leads to greater uncertainty. It is remarkable that the confidence intervals with the LN Trend model are so wide for the forecasting period (2001-2050). 

9 Windowing

An alternative approach that has often been suggested for forecasting risk when the flood distribution changes with time is “windowing”. To eliminate bias this method employs a selected subset of historical years to represent the future flood risk distribution. For example, one might use the period from 1970 to the present, instead of 1898 to the present, because the observed flood risk before 1970 was less than that observed during the later 1970-1998 period. While this idea at first seems simple and attractive, upon closer inspection the method does not really appear to provide a practical method that would be statistically efficient. Two important problems arise in this context:

1. How does one select such a representative subset of the historical record, unless the periods are defined by land cover, channel reconstruction, or other definitive activities?

If only the last 10-20 years are used, then the record for planning is very short and the results will lack precision. If only years with same size floods are used, then there is no gain in statistical precision because one does not have a random sample and has only added years of record that are consistent with the relatively recent experience.

2. How would one capture the transition to the long-run unconditional distribution?

If there are high and low risk periods in the historical record, it would seem reasonable to assume that risk will continue to vary between such regimes in the future. However, with windowing future risk is static with the distribution observed during the prescribed window. This could be resolved if the window were allowed to expand at some rate, but in what direction and at what rate should the window be expanded?

10 Flood Risk and Metrics of Risk

As part of a flood risk management strategy, agencies need to define the floodplain and describe flood risk. For investment decisions, society needs to compute the economic implications of flood risk. With these tasks in mind, this section considers some simple metrics that could be used to describe the time series of flood risks generated by the different flood models. As pointed out by Rogers (1997), many real design decisions reflect a series of capacity expansions and a range of uncertainties including demand, climate technology, and environmental impact. Project staging and other considerations are not addressed here.

When the traditional LN i.i.d. model is used, risk is constant during the planning period and one number, 
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, is enough to describe the predicted annual risk of flooding for any threshold. For a model 
[image: image65.wmf]M

 and a planning period of length 
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, the forecasted risk for any threshold is not constant but is completely described by a sequence of annual risks of flooding:
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It is useful to consider how such a sequence of probabilities might be summarized to help answer questions such as: what is the risk of flooding? Simple risk metrics may also be useful for comparing the different risk forecasts developed in the previous section. This section proposes a set of metrics that appear reasonable and useful as simple risk summaries. After eliminating some duplications, a subset of those metrics are then compared using the Hannibal record forecast series to see how they behave for a specific example.

We describe here some summary measures of risk for a given model 
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 and a design period 
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10.1 Maximum Annual Risk (
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This measure of risk captures one important characteristic of the set 
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, the maximum risk over the design period. If 
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 is small then the flood risk for every particular year will be small. If 
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 is moderately large, then the flood risk for a particular year will not necessarily be large. However, it provides a useful metric for comparing two series by highlighting the worst risk.

10.2 Average Annual Risk (
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Like 
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 tries to capture one important characteristic of the distribution of the set 
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, the mean of the annual risks for the planning period. If 
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 is large then the risk for some particular years will be large and there will tend to have more years with high flooding risk then years with low flooding risk. If 
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 is small then the risk for some particular years will tend to be small, and there will tend to have more years with low flooding risk then years with high flooding risk.

There is strong motivation for using the average risk. When one describes the annual risk for a year, the risk of flooding during that year is generally not uniform and is higher during the flood season and lower at other times. Thus it is also reasonable to consider the average risk over the planning period.

10.3 Minimum Annual Risk (
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Like 
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 captures one characteristic of the distribution of the set 
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, the minimum annual risk over the planning period. Because high-risk situations are to be avoided, 
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 may not be the most appropriate metric to guide flood risk management. However, for the purposes of comparing different risk forecasts, 
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10.4 Probability of at least One Flood (POF)
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POF represents the risk of at least one flood exceeding the threshold during the planning period. It includes no other information on the magnitude or the timing of floods. The larger the POF the more likely is a flood occurrence. This is the exact risk of at least one flood if the forecasted risks of flooding are independent. This is true for all the scenarios except for the ARMA models. 

If the product 
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 is much smaller than 1, then by ignoring the higher order terms in the POF formula, one obtains the simpler expression
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It should be of no surprise that the risk of at least one flood is closely related to the average annual risk of a flood.

10.5 Expected Number of Floods (ENF)
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This measure of risk is the expected number of floods over the threshold during the design period. It has no other information on the magnitude of floods or on the time when they are more likely to occur. The larger the ENF the more frequently floods will be recorded during the design period. Clearly
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Thus ENF provides no information not provided by the average 
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 so that the ENF metric is not pursued further.

10.6 Economic Equivalent Risk (
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The previous five metrics have considered measures of risk (min, max, average) without regard to the time-value-of-loss. It is generally accepted practice to discount economic gains and losses to represent the time-value of money.

Suppose that one knows the Damage function 
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 be the economic discounting factor. If 
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 are the flood levels over the planning period, then the Discounted Damage Function evaluated at the current time is
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(13)

Conditional on a model 
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, the Expected Discounted Damage Function (EDDF) is 
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Suppose now that the Damage Function has a special form:
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Here 
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 is a flooding threshold. If one is interested in this specific threshold and we denote the risk of flooding under a model 
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. Then the EDDF for model 
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For the LN i.i.d. model one obtains
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By requiring that 
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one can compute the economic equivalent flood risk 
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 for the LN i.i.d. model that gives the same level of expected discounted damages as that obtained for model 
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. The needed relationship is simply
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This formula economically ‘discounts’ the annual flood risk in a meaningful way to obtain the economic equivalent risk 
[image: image118.wmf]ee

p

 that corresponds to any risk sequence 
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This formulation of the economic equivalent risk implicitly assumes that the damage function 
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 does not change over time. This may not be reasonable in many situations so that a more general definition of 
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 may be attractive for some projects. Suppose that in equation (13) the damage function for exceeding a given threshold varies over time.  Let 
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 denote the damage after h years due to the maximum annual flood 
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. In this case the economic equivalent risk can still be defined as the implicit solution of equation (15) where the new discounted damage function takes into account the changes in the damage function.

10.7 Example Computation

The different risk metrics are compared using the Hannibal record example with 10-year and 30-year planning horizons, and the five different risk forecasts described in section 6. Table 5 and Table 6 report results for a flood threshold fixed at the 100-year flood computed with the LN i.i.d. model.

Table 5. Metrics of Risk 10-year Planning Horizon 

	
	Risk 1998
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	POF

	LN i.i.d.
	0.010
	0.010
	0.010
	0.010
	0.096

	LN ARMA(1,1)
	0.024
	0.010
	0.014
	0.024
	0.134

	LN ARMA(2,1)
	0.027
	0.013
	0.018
	0.027
	0.163

	LN Trend (TS)
	0.038
	0.038
	0.038
	0.038
	0.321

	LN Trend (TC)
	0.038
	0.038
	0.044
	0.050
	0.362


Table 6. Metrics of Risk 30-year Planning Horizon 

	
	Risk 1998
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	POF

	LN i.i.d.
	0.010
	0.010
	0.010
	0.010
	0.260

	LN ARMA(1,1)
	0.024
	0.010
	0.012
	0.024
	0.293

	LN ARMA(2,1)
	0.027
	0.010
	0.013
	0.027
	0.325

	LN Trend (TS)
	0.038
	0.038
	0.038
	0.038
	0.690

	LN Trend (TC)
	0.038
	0.038
	0.060
	0.086
	0.842


Table 5 and 6 show the risk in the year 1998, and for the10 and 30-year planning horizons report the minimum risk 
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, the maximum risk over the planning period, 
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 and the probability of at least one flood, POF. There is no variation in risk over time for the LN i.i.d. forecast and the LN Trend/TS (1998 level) forecast. For these models Risk-1998=
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, and equals either 0.01 or 0.038 for each year, respectively.

For the LN Trend/TC the Minimum Annual Risk equals the initial risk in 1998, while risks later rise to a maximum annual risk of 8.6% per year. On the other hand, the ARMA(1,1) model has its maximum annual risk the first year corresponding to 2.4%. The annual risk then decays to the long run average of 1% yielding an average value Annual Average Risk for the 10-year planning period of 1.4% per year, and for the 30-year planning period of only 1.2% per year. 

The probability of flooding POF in the last column would generally rank the models in the same order as the average risk 
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, but provides numbers that look very different. The total risk over the planning period is close to 30*
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 only for the first three forecasts. POF indicates for the LN Trend/TC forecast, that an exceedance of the 1998 100-year-flood level has an 84% chance of occurring over the planning period due to the high probabilities of flooding in later years. However, with the LN i.i.d. model, the cumulative flood risk over 30 years is only 26%.

A risk metric is needed which, like the Average Annual Risk, captures the overall average flood risk, and also reflects the time value of money. Generally, discounting time series of damages or benefits is a well-accepted procedure for capturing the time value of money, but does not generate a number that is as easily understood as an annual risk of flooding. The economic equivalent risk achieves the objective of converting a discounted cost into an equivalent annual flood risk that can easily be understood, while still capturing the time value of money.

Table 7 and 8 report the economic equivalent risk 
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 for each flood risk forecast series, and two discount rates. The 
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 values resemble the Average Annual Risk 
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 because the larger risks occur at the beginning of the series. For the LN Trend/TC 
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 because the larger risks occur at the end of the planning period. For the LN i.i.d. and LN Trend/TS forecasts the risks are constant, so that 
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. This occurs because the risk is constant in these two special cases.

Table 7. Economic Risk Description 10-year Planning Horizon
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 (Discount: 10%)
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 (Discount: 5%)

	LN i.i.d.
	0.0100
	0.0100
	0.0100
	0.0100
	0.0100

	LN ARMA(1,1)
	0.0101
	0.0143
	0.0244
	0.0154
	0.0149

	LN ARMA(2,1)
	0.0127
	0.0177
	0.0273
	0.0189
	0.0183

	LN Trend (TS)
	0.0383
	0.0383
	0.0383
	0.0383
	0.0383

	LN Trend (TC)
	0.0383
	0.0439
	0.0498
	0.0429
	0.0433


Table 8. Economic Risk Description 30-year Planning Horizon
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 (Discount: 10%)
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 (Discount: 5%)

	LN i.i.d.
	0.0100
	0.0100
	0.0100
	0.0100
	0.0100

	LN ARMA(1,1)
	0.0100
	0.0115
	0.0244
	0.0136
	0.0125

	LN ARMA(2,1)
	0.0101
	0.0130
	0.0273
	0.0161
	0.0146

	LN Trend (TS)
	0.0383
	0.0383
	0.0383
	0.0383
	0.0383

	LN Trend (TC)
	0.0383
	0.0595
	0.0855
	0.0495
	0.0539


It is of interest to consider the impact of different flood forecasts on the operation and economic design of reservoirs, levees and other flood risk management options. When one can reallocate flood control storage and reservoir levels on a year-to-year basis, then forecasts of flood risk in the next season can be used to adjust flood operations and reservoir storage allocations from year-to-year. The initial sizing of flood control reservoirs and levees as well as the delineation of the floodplain present a different challenge because there is little or no opportunity to adjust these design values from year-to-year once they are decided. In some cases, they are literally set in concrete.

In these situations, what is the impact on the design decision of the different risk forecasts? The LN i.i.d. model is the traditional paradigm that extends the historical flood risk experience into the future without change. The two LN Trend forecasts for Hannibal would result in very different design decisions because of the highly elevated risks they project for the entire planning period. However, it is highly doubtful that the “Trend Continues” is a rational and hydrologically realistic model for economic decision-making. However, projecting flood risk at the constant level experienced at the end of the historical record period would be appropriate when analysis suggest that the new level will continue.

The ARMA forecasts are likely to be the most reasonable for many situations (see also Matalas, 1997). It envisions flood risk to be stationary in the long run but allows multi-year variations that can be viewed as temporary shifts in flood risk. This is consistent with the view that earth climate system is a highly nonlinear, multidimensional system. As discussed in the appendix, by replicating the 100-year history we sought to fit the highest order ARMA model we could justify with the data so that this example analysis would be more revealing. As a result for ARMA(1,1) for the shorter 10-year planning horizon the economic equivalent risk rose to 1.5% from a nominal 1% level illustrating the realistic impact of variation in flood risk in this instance. For the ARMA(2,1) model over the 10-year planning horizon 
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 rose to 1.8-1.9%. 

Such a change could certainly affect storage allocations in large reservoirs. But would it affect design decisions such as the capacity of flood control reservoirs and of levees? There another issue comes into calculation. It may take 2-3 years to complete the planning and 3 years for design efforts, 2-3 years to obtain authorization of the project and 2 years to complete construction. Thus imagine that 10-15 years will pass between when the flood risk forecasting analysis is performed and a project goes into operation. Then for design purposes, we should use the likely future risk starting after 10 years hence {
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As figures 1-4 show, while the ARMA models project that risk levels may be elevated (or depressed) for several years, after 10 or more years most of that difference is lost. This actually seems like a fairly reasonable and perhaps general result. If one assumes that flood risk is variable with some long-term persistence, then projection of the variation in flood risk should affect allocation of flood storage and other decisions that can be adjusted. However, economic project design is much more dependent on the long-run average risk over the entire design period, and the common delays between planning activities and the completion of major structural projects means that forecasts of the distribution of flood risk will generally have returned to the long-run average. Again the exception is when permanent shifts in flood risk or a continuation of a trend are the most rational models for future flood risk.

Table 9 reports the economic equivalent risk 
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 for LN i.i.d. and ARMA models computed for the two cases discussed above. The first two columns represent the economic equivalent risk computed for “immediate” forecasting using {
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}. The last two columns represent the economic equivalent risk computed with 10-year delay before the project becomes operational. In this case we used  {
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} for the computations. As expected, the inherent time delay between the time when a forecast would be made to support project planning, and when a project would become operational has a sizeable impact on the estimated risks. For the ARMA model the forecasted risk distribution tends to be closer to the long-run unconditional distribution of the process for a longer forecasting horizon. A direct consequence is that forecasted economic equivalent risk for delayed projects given by a stationary ARMA model is similar to the forecasted economic risk given by the LN i.i.d. model. This analysis further supports the wait-and-see philosophy that many have advocated as appropriate for water resources planning in view of possible but highly uncertain climate change impacts on water resources (Frederick et al., 1997; Rogers, 1997; Stakhiv, 1998, p. 167-168).

Table 9. Economic Equivalent Risk 

	
	Immediate
	10-year delayed

	
	Discount (5%)
	Discount (10%)
	Discount (5%)
	Discount (10%)

	LN i.i.d.
	0.010
	0.010
	0.010
	0.010

	LN ARMA(1,1)
	0.013
	0.014
	0.010
	0.010

	LN ARMA(2,1)
	0.015
	0.016
	0.011
	0.011


11 Conclusions and Recommendations

It is now widely recognized that climate is variable from decade-to-decade. This paper investigates how flood risk estimation and risk forecasting might be done in a world with variable flood risk. Four alternative forecasting approaches were developed using reasonable models for climate variability. The approaches were used to describe flood variability for sites in the upper Mississippi River basin.

Management of flood risk in a world with variable climate would be aided by simple summary measures of flood risk. A set of such simple risk measures was developed and used to compare four risk forecasts. The economic equivalent risk metric has the advantage of combining the concept of an average risk with the time value of money.

The investigation demonstrated that stationary time series models are very flexible and produce a reasonable interpretation of historical records. The i.i.d. models are included within this larger class of models. Stationary time series allow risk to vary but preserve the assumption that hydrology is stationary in the long run. In this framework, perceived trends in a flood record can be interpreted as the result of natural and stationary variations. When stationary time series models are used for risk forecasting, the predicted risk returns to the unconditional long run average as the forecasting horizon is extended. The resulting variation in flood risk is likely to affect flood risk management if decision parameters can be adjusted on a year-to-year basis; however variations in flood risk are likely to have disappeared before major construction projects can be designed, authorized and completed.

Because model selection methods have little power with the given lengths of record (
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100 years), global and regional data from a number of sources that are proxies for the hydrologic variables are needed to solve this problem and to find reasonable stationary time series for maximum annual floods. Examples of use of sedimentation rates for the Mississippi are provided by Knox (1987). Other examples of paleohydrologic data including slack water deposits and paleostage indicators are provided by Jarret and Tomlinson (2000) and Baker (2000) while Hidalgo et al. (2000) consider dendrohydrologic reconstructions.  

12 Appendix

12.1 Precision of the mean and quantile estimators for LN Trend model

In section 5 we considered the LN Trend model in equation (2) as a statistical tool for climate variability analysis. The Maximum Likelihood (ML) estimators of 
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 and 
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 are identical to the Least Squares (LS) estimators and are given by
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It follows that 
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 are jointly normally distributed, unbiased estimators of 
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 respectively with covariance matrix given by 
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A direct consequence is that 
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 are independent estimators. The mean flood at any given time t is 


[image: image173.wmf])

(

)

(

t

t

t

m

-

+

=

l

m

.

The Best Linear Unbiased Estimator (BLUE) of the mean flood is 
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which is an increasing function of 
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Similarly, the estimator of the 
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 (Stedinger, 1983).

12.2 ARMA modeling and forecasting

The initial flood record for Hannibal presents an apparent trend in the mean flood level. If one tries to fit a low order stationary ARMA model to this initial time series, the maximum likelihood estimates of the model parameters are very close to the non-stationary boundary of the parameter space, if not on the boundary. When we attempted to implement this approach, problems resulted.

To achieve homoscedasticity for the record flood a log transformation of the original time series was employed. The trend in the initial record flood is considered to be a visible realization of a longer natural, stationary process. In order to model such a process we used a method of data augmentation. The record and the backward record were replicated and joined several times. Denote by r a replication of the data and by b a backward replication of data. We then put the data together respecting the following succession rule: r b r b r… This method transforms the original record to a long stationary time series. 

ARMA models were fitted to this transformed time series using the maximum likelihood estimators procedures from Box et al. (1994). For the transformed time series, 
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. The fitted ARMA(1,1) model by the maximum likelihood method is
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An ARMA(2,1) model is


[image: image198.wmf]1

1

2

1

1

-

-

-

-

=

-

-

t

t

t

t

t

X

X

X

e

q

e

f

f


where 
[image: image199.wmf]t

e

 are i.i.d. 
[image: image200.wmf])

,

0

(

2

e

s

N

. The fitted ARMA(2,1) model by the method of moments is
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12.3 Goodness-of-fit

The initial model analysis and selection considered a much wider class of models including different Cox transformations with trend models and low-order stationary ARMA models. AIC (Akaike, 1974) and BIC (Schwartz 1978) goodness-of-fit criteria were compared for these models. They are defined as follows:
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where p is the total number of model parameters, n is the sample size and 
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 is the Maximum Likelihood Estimator of the error variance. AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) are information criteria widely used in the statistics literature and reflect different model selection points of view. They can be used to choose between a wide variety of models, nested or non-nested.

AIC is related to the minimization of the forecast error including parameter estimation uncertainty, but tends to overestimate the number of model parameters. The BIC criterion imposes a larger penalty for the number of estimated parameters so it will tend to choose a model with fewer parameters than AIC (Nishii, 1984).

Table 10 reports the values of AIC and BIC for 5 models. Theory suggests one should select the model that yields the minimum value of the selected information criterion.

Table 10. Goodness of Fit Measures- Hannibal

	Mode
	AIC
	BIC
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	Number of parameters

	LN i.i.d.
	-1.9930
	-1.9412
	0.1310
	2

	LN Trend
	-2.1254
	-2.0477
	0.1125
	3

	LN ARMA(1,0)
	-2.0922
	-2.0431
	0.1196
	3

	LN ARMA(1,1)
	-2.0975
	-2.0320
	0.1180
	4

	LN ARMA(2,0)
	-2.0924
	-2.0269
	0.1186
	4


With the given record length of 100 years these tests have low power and cannot distinguish between the alternatives considered. Like many model selection criteria, AIC and BIC are not perfect but provide statistical insight, are intuitive and easy to compute. 

Statistical and economical analysis of risk needs to be model based. The results conditional on different models can be very different and can lead to different decisions. Deciding between competing models is not an easy task especially with realistic record lengths ((100 years). 

The ARMA models tend to fit the data better than LN i.i.d (smaller AIC and BIC) and provide reasonable risk forecasts over the planning period. The AIC criterion would select the ARMA(1,1) model as the most appropriate low order ARMA model. BIC prefers the ARMA(1,0). ARMA(2,1) is not included in Table 10 because the required maximum likelihood estimators appeared to lie on the boundary of the stationary region and thus were not feasible. The method of moment estimators of parameters was employed instead.

13 List of Symbols


c
:
Damage level in case of threshold exceedance


d
:
Number of years in the risk analysis


h
:
Number of years for forecasting


q0
:
Threshold for maximum annual flood
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:
Economic equivalent risk


pi
:
Risk of exceeding a given threshold during the year i.
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:
Average annual risk
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:
Maximum annual risk
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:
Minimum annual risk


t
:
Year index
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:
Average of years in the design period


T
:
Record length


Qt
:
Maximum annual flow for year t.
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:
Economic discounting factor



[image: image212.wmf]h

d


:
Conditional mean under the Log-Normal ARMA model
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:
Error process
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:
The ith parameter of the AR(p) polynomial for the Log-Normal ARMA(p, 1) model
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:
Log scale slope of the trend in the Log-Normal trend model
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:
Log scale mean of the maximum annual flow
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:
Parameter of the MA(1) polynomial for the Log-Normal ARMA(p, 1) model
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:
Long run standard deviation 
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:
Conditional standard deviation under the Log-Normal ARMA model

14 List of Abbreviations


ARMA
:
AutoRegressive Moving-Average

AIC
: 
Akaike Information Criterion


BIC
:
Bayesian Information Criterion


ENF
:
Expected Number of Floods


i.i.d.
:
Independent and Identically Distributed

LN
: 
Log Normal

LSE
:
Least Squares Estimator


M
:
Model


MLE
:
Maximum Likelihood Estimator


POF
:
Probability Of at least one Flood


TC
:
Trend Continues with the same slope and intercept


TS
:
Trend Stops after the design period
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