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Appendix M: Bivariate Distributions with Specified Marginal Distributions

In a given hydrologic region, flow sequences are to a varying degree correlated, where correlation is a measure of linear dependence. Information extracted from the sequences on a sequence by sequence basis is to some degree redundant. The degree of redundancy varies directly with the degree of correlation. At one extreme where the sequences are perfectly correlated with one another, the degree of redundancy equals one, implying that there is effectively one sequence in the region. At the other extreme, where the sequences are uncorrelated with one another, the degree of redundancy is equal to the number of sequences in the region. In general, the correlation between the sequences lies between the two extremes. All other things being equal, the greater the distance between the locations of the gaged sites in the region, the smaller is the correlation between the sequences.

In assessing information extracted from the sequences collectively, account must be taken of the correlation structure among the sequences. Generally the correlation structure is interpreted as deriving from random variables distributed as multivariate Normal or as multivariate Log-Normal. Because flow sequences exhibit values of skewness that can not be statistically accepted as arising by chance, the multivariate Normal interpretation of the correlation structure among the sequences is questionable, though it might be accepted in order to arrive at a first order assessment of the extracted information. A more acceptable assessment of the information is that based on interpreting the correlation structure of the logs of the flows as deriving from random variables distributed as multivariate Normal. 

In dealing with flood flows, hydrologic practice within federal agencies is guided by Bulletin 17-B which requires the agencies to use the Log-Pearson Type III distribution unless sufficient reason can be given to the use of another distribution. If Bulletin 17-B were to be  extended to the multivariate case, then the correlation structure among the flood sequences in a region would be interpreted as deriving from random variables whose multivariate distribution is Log-Pearson Type III. The correlation structure 

among the sequences of the logs of the flows would be interpreted as arising from variables whose multivariate distribution is Pearson Type III.

To initiate study of the multivariate Log-Pearson Type III in hydrology, a procedure for generating bivariate Pearson Type III sequences is assessed. The procedure, introduced by Johnson (1978), is a general procedure for generating sequences relating to a bivariate distribution with specified marginal distributions. The marginal distributions can not be arbitrarily chosen. The distributions must be such that the random variables to which they relate are such that the distribution of the weighted sum of the variables is the same, apart from parameter values, as the distributions of the variables themselves conditioned on the random variables being independent and identically distributed.

The values of the sequences generated by Johnson’s procedure may be exponentiated to derive sequences of Log-Pearson Type III bivariate sequences. Regional assessments, e.g. assessments of trend, persistence and flood risk, may be made in terms of bivariate Log-Pearson Type III sequences generated by Johnson’s procedure. That assessment may be compared with that made using Log-Normal sequences generated by Johnson’s procedure. The Log-Normal sequences generated by Johnson’s procedure may be compared with the sequences derived through exponentiation of the standard bivariate Normal distribution.

Weighted Linear Combination

A simple procedure for generating bivariate sequences distributed with specified marginals and specified measure of dependence has been suggested by Johnson (1978). The procedures, referred to as the weighted linear combination is as follows. Let 

 and 

  be two independent and identically distributed random variables. Define 

 and 

 as 
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where 

 is the measure of dependence between 

 and 

. Johnson (1978) notes that the procedure has two degrees of freedom, the measure of dependence, 

, and the distribution of 

 identical to the distribution of 

, 

.

Given that the  distributions of 

 and 

 are identical, 
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for 

, where 

 is an integer. In order that the distributions of 

 and 

 are the same, apart from the values of their parameters, the distributions of 

 and 

  can not be arbritarily chosen. 

Two distributions used extensively in hydrology are the Log-Normal and the Log-Pearson Type III. The distributions of 

 and 

 cannot both be Log-Normal (Log-Pearson Type III) as the distribution of the sum of Log-Normal (Log-Pearson Type III) variables is not Log-Normal (Log-Pearson Pearson Type III). If the distributions of 

 and 

 are both Normal (Pearson Type III), the distributions of 

 and 

 are both Normal (Pearson Type III), whereby the distributions of 

 and 

 are both Log Normal (Pearson Type III). Through Eqs. (1) and (2), the bivariate structure having Log Normal marginals may be compared in a relatively straighforward manner with the bivariate structure having Log Pearson Type III marginals, where both bivariate structures characterized by the same degree of dependence. The dependence between 

the Log Normal (Log Pearson Type III) variables is weaker than that between the Normal (Pearson Type III) variables. Nonlinear transformation weakens the degree of dependence.

The means of 

 and 

 are
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where
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The variances of 

 and 

 are
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where
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The third central moments of 

 and 

 are
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where
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The fourth central moments of 

 and 

 are
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where
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The coefficients of skewness of 

 and 

 are


 EMBED "Equation" \* mergeformat  


(M-12)

where
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The coefficients of kurtosis of 

 and 

 are
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It follows that 
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Let
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It follows that
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where
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If 

, then 

 

.

The solution of 
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yields 

, for which 

, the minimum value of 

, is
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The solution of 
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yields 

, for which 

, the minimum value of 

, is
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There are three solutions of 
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namely, 

, 

 and 

 conditioned on 

. The solutions 

 and 

 yield equal maximum valuea of 

, namely 

. The solution 

 yields
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See Figures M-1, M-2 and M-3.
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Given that 

 and 

 are independent, the covariance of 

 and 
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whereby, the correlation, measure of linear dependence, between 

 and 

 is
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The covariance between 

 and 

 is given as
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whereby, the correlation between 

 and 

  is given as
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where


 EMBED "Equation" \* mergeformat  


(M-32)

Refer to Eqs. (M-17) and (M-18).

See Figure M-4.
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Normal and Log Normal Marginals: Unspecified Bivariate Form

Let 

 and 

 be independent and identically distributed Normal random variables. The sum of normally distributed random variables is normally distributed. It follows that 

 and 

, defined by Eqs. (M-1) and (M-2), are dependently distributed Normal random variables. See e.g. Johnson and Kotz (1970). The probability density function, 

, of 

 may be expressed as
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where 

.

It follows that
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where 

 , 

 and 

 are each distributed on the interval 

.

The Normal distribution has the characteristics 
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It follows that
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where 

 is distributed on the interval 

.

The correlation between 

 and 

 is denoted as 

, where the subscript 

 identifies the marginal distributions, i.e. the distributions of 

 and 

 as being Normal distributes. The correlation 

 is given by Eq. (M-31). 

Define
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In the following discussions, 

 and 

 denote random variables in log space, whereby 

 and 

 denote random variables in real space.

The relation between 

 and 

 is given by
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whereby,
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Define
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where 

. 

It follows that
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where
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Define


 EMBED "Equation" \* mergeformat  


(M-44)

It follows that
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where
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The covariance between 

 and 

 is given by
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whereby, the correlation between 

 and 

 may be expressed as
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where
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Refer to Eq. (M-31).

The correlation in real space, 

, is structurally a function of three parameters in log space, namely the correlation 

, the scale parameter of 

, 

, and the scale parameter of 

, 

. Refer to Eqs. (M-17) and (M-18). However, 

 has only two degrees of freedom, namely the scale parameter 

 and the weighting factor 

. The factor 

 defines 

. Given 

, 

 defines the scale parameter of 

, namely 

. 

The scale parameters 

 and 

 determine the shape parameters, i.e. the skewness and kurtosis, of the distributions of 

 and 

. If 

, then 

, implying that 

 or 

. If 

, then 

 and consequently 

. If 

, then 

 and consequently 

. Unless 

, 

 and 

 cannot be perfectly correlated.

As 

, the correlation in real space, 

, approaches the correlation in log space, 

, given by Eq. (M-31) where 

. As 

 increases, 

 decreases (decreases) 

 

 (<0). As 

, 

 



. See Figure M-5.
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The relation between the correlation in log space, 

, and the correlation in real space, 

, is shown in Figure M-6.
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From Figure 6, it is seen that in absolute value, the correlation in log space is greater than the correlation in real space. As 

, 

 

 

.

The relation between 

 and 

 may be expressed as
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Normal and Log Normal Marginals: Specified Bivariate Normal

In log space, let the random variables 

 and 

 be jointly distributed as bivariate Normal. The distributions of 

 and 

 , i.e. the marginal distributions, are Normal. The relation between 

 and 

 may be linearly expressed as
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where 

 is normally distributed with zero mean and unit variance independently of 

, and
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The relation between 

 and 

 defined by Eq. (M-51) references the regression of 

 on 

, where 

 denotes the regression coefficient and 

, the correlation between 

 and 

.

In real space
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whereby the low order moment characteristics of 

 are
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where
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The low order moment characteristics of 

 are given by Eq. (M-55) with 

 replaced by 

, 

 replaced by 

 and 

, defined by Eq. (M-56), replaced by
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The covariance between 

 and 

 is defined as
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whereby the correlation between 

 and 

, i.e. the correlation in real space, is 
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For 
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For 
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The correlation in real space, 

, is structurally defined by three parameters in log space, namely the correlation 

 and the scale parameters 

 and 

 of the distributions of 

 and 

. The scale parameters 

 and 

 have no bearing on 

.

In general, 

 for 

, where equality attains for either 

 or 

, and 

 for 

. If 

, then as 

 increases, whereby 

 increases, the correlation in real space, 

, decreases relative to a given value of 

. See Figure M-7.
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If 

, in which case 

, then 

 decreases relative to a given value of 

 as 

 increases, or equivalently as 

. See Figure M-8.
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Let 

 and 

, where 

. Eq.(M-58) may be expressed as
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which is parallel in structure to the relation between the real and log space correlation based on the weighted linear combination procedure given by Eq. (M-48). As noted above, 

 is determined with three degrees of freedom, whereas 

 is determined with two degrees of freedom. Let 

 and 

. Then 

 equals either 

 or 

, so that 

 equals 

 and 

, whereby 

 equals 

 or 

. However, 

 may assume any value within the interval 

. Let

 and 

. Then for 

, 

.

Pearson Type III and Log Pearson Type III Marginals: Unspecified Bivariate Form

In the following discussions, the Pearson Type III and Log Pearson Type III distributions are referred to as the Pearson and Log Pearson distributions. In log space, let 

 and 

 be independent and identically distributed Pearson random variables. The sum of Pearson distributed random variables is distributed as Pearson. Thus, 

 and 

, defined by Eqs. (M-1) and (M-2) are dependently distributed Pearson random variables in log space. The probability density function, 

, of 

 may be expressed as 
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where 

 if 

 or 

 if 

. If 

, then 

 is characterized by positive skewness, and if 

, then 

 is characterized by negative skewness. 

The Pearson distribution has the characteristics
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It follows that
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The correlation between 

 and 

 is denoted as 

, where the subscript 

 identifies the Pearson distribution, i.e. the distributions of 

 and 

 as being Pearson distributions. The correlation 

 is given by Eq. (M-31).

Define
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where 

 and 

 is given by Eq. (M-63).

It follows that
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where
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Define
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It follows that
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where
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The covariance of 

 and 

 is
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and therefore,the correlation in real space, 

 is given by
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where
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where
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The correlation in real space is determined with three degrees of freedom, namely log space parameters of scale, 

, the shape parameter, 

, and the weighting factor, 

. The weighting factor defines the log space correlation, 

, given by Eq. (M-31). The shape parameter, 

, defines the log space skewness. The real space skewness is defined by the parameters 

 and 

.

In hydrologic studies based on the Log-Pearson distribution, it is assumed that skewness exists in real space, and empirical results suggests that the skewness in log space is negative.
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