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Uncertainty of Flood Frequency Estimates

Introduction

The long standing practice of flood frequency analysis presumes sequences of observed annual floods to be realizations of independent and identically distributed (iid) random variables. In order to limit disagreements among federal agencies in estimating flood a quantile at a particular sites, the agencies have sought to identify a specific distribution to be used by all agencies in flood quantile estimation. Through the U.S. Water Resources Council, the federal agencies adopted the Log-Pearson Type III distribution with the understanding that unless another distribution could be shown to be better, the Log-Pearson Type III distribution would be used by all federal agencies in reference to a specific site. The procedures by which flood quantiles conditioned on the Log-Pearson Type III distribution are estimated are defined in Bulletin 17-B of the Interagency Committee on Water Data originally published by the U.S. Water Resources Council (1981).

Until recently, the iid assumption underlying flood frequency analysis has been unquestioned. As the issue of climate change moved higher on the public agenda, hydrologists have given greater attention to the study of the extent to which hydrologic change is a reflection of climate change induced by global warming or a reflection of change in land use. For the most part the studies have sought to show that flow sequences are marked by trends, whereby the iid assumption does not hold. Sequences of annual floods are seemingly less prone to reflect trends than sequences of annual mean or low flows. Because a trend may be part of a slow oscillator movement, an assessment of trend is best accompanied by an assessment of persistence. Without entering into study to establish the presence or absence of trends or of persistence in flood sequences, the uncertainty in flood frequency estimates induced by relaxation of the iid assumption is examined. Relaxation in the iid assumption leads to greater flood risk.

Uncertainty in flood frequency estimates is not limited to the questioning of the iid assumption. Even if the iid assumption holds, there is uncertainty related to statistical 

errors in the estimates of flood quantiles. Assessment of statistical errors has been and continues to be standard hydrologic practice. 

Through flood frequency analysis, an estimate of a particular flood quantile, such as the magnitude of the 100-year flood, is derived. It is recognized that the estimate is subject to error. The error introduces uncertainty in using the estimated quantile in an operational situation. A decision for effecting mitigation of flood loses that in part, at least, incorporates the estimated quantile, is made under uncertainty. The uncertainty derives from several sources, of which the error of estimation in the flood quantile is one. It is that source which is a subject of investigation in this report.

The error in the estimation of a flood quantile is a function of 1) the length of the flood sequence, 2) the choice of probability distribution, 3) the method used to estimate the parameters of the chosen distribution and 4) the definition of the plotting position. Because the length of a sequence can only increase with the passage of time, efforts are made to effect an increase in record length through correlations with sequences of greater length, i.e. to effect a transfer of information to the site of interest from sites having longer sequences. 

Of the various contributors to the error in the estimate of a flood quantile, only one is considered herein, namely, the contribution derived via the estimation of the skewness. The statistical sampling error in the estimate of skewness is recognized as a major source of uncertainty in the an estimate of a flood quantile. In the following discussion, the estimation of skewness per se is not addressed. Rather, the issue of estimating skewness is side stepped in log space by considering the use of a Right-Tail Normal distribution in place of the Pearson Type III distribution. The Right-Tail Normal distribution is a Normal distribution whose right tail is determined from the logs of the observation without fit of the left tail. If the Right-Tail Normal distribution provides better estimates of quantiles in log space than the Pearson Type III distribution, then the Right-Tail Log-Normal distribution provides better estimates of quantiles in real space than the Log-Pearson Type III distribution, and conversely. By considering a Right-Tail Normal distribution, there is no need to consider censoring 

some of the smaller floods to effect a better estimates of flood quantiles via a truncated Log Pearson Type III distribution as outlined by Bulletin 17-B.

The relative goodness of fit of the Right-Tail Normal distribution and the Pearson Type III distribution is examined on both an at-site and regional basis.

Assessing the effects of relaxation in the iid assumption provides better understanding of flood risk and uncertainty. Adopting a Right-Tail Log-Normal distribution as an alternative to the Log-Pearson Type III distribution effects, so to speak, a reduction in flood uncertainty without increasing costs or reducing benefits. Basically the Right-Tail Log-Normal distribution effects simplification of flood frequency analysis, and it puts the emphasis where it should be – on the fitting of the right tail to an ordered sequence of observed floods.

The study is based on observed sequences of annual 1-day high flows and annual peak flows at sites within the Upper Mississippi and Lower Missouri basins. With focus on flood risk and uncertainty, the definitions of risk and uncertainty given by the U.S. Water Resources Council (1983) in their report, Economic and Environmental Principals and Guidelines for Water and Related Resource Implementation Studies are briefly reviewed.

Prelude to the study, the spectrum of sequences of extreme flows of various durations, varying from annual 1-day low flow to annual mean flow to annual 1-day high flows are statistically described on both an at-site and a regional basis.

Background

Study Region and Data Base

The study is limited to sequences at sites within the Upper Mississippi and Missouri basins. The Missouri basin contributes about 528,000 mi2 to the total drainage area of about 697,000 mi2  for the two basins at St. Louis, MO. The two basins extend over 21° of longitude, approximately 1,000 mi and 8 ° of latitude, approximately 550 mi. Streamflow sequences at 44 sites, 26 in the Upper Mississippi basin and 18 in the Lower Missouri basin are used to assess the uncertainty of flood frequency estimates. The 44 sites are partitioned into two sets. The first set consists of 21 sites in the Upper Mississippi basin and 11 sites in the Lower Missouri basin. See Table 1.

Table 1:  General Description of Flow Sites in the Upper Mississippi and Lower Missouri Basin

Stream
Locale
State
Lati-        tude     (deg.)
Longi   tude     (deg.)
Drainage Area           (sq. mi.)
Period of observed Sequence

Upper Mississippi Basin

St. Croix
St. Croix
WI
45.41
-92.65
6,240
1911-1998

Jump
Sheldon
WI
45.31
-90.98
576
1916-1998

Black
Neillsville
WI
44.58
-90.61
749
1914-1998

Maquaketa
Maquaketa
IA
42.08
-90.63
1,553
1914-1998

Mississippi
Clinton
IA
41.78
-90.25
85,600
1874-1998

Rock
Afton
WI
42.61
-89.07
3,340
1915-1998

Sugar
Broadhead
WI
42.61
-89.40
923
1915-1998

Pecatonica
Freeport
IL
42.30
-89.62
1,326
1915-1998

Cedar
Cedar Rapids
IA
41.97
-91.67
6,510
1903-1998

Skunk
Augusta
IA
40.75
-91.28
4,303
1915-1998

Mississippi
Keokuk
IA
40.39
-91.37
119,000
1879-1998

Des Moines
Stratford
IA
42.25
-94.00
5,452
1921-1998

Raccoon
Van Meter
IA
41.53
-93.95
3,441
1916-1998

Iroquois
Chebanse
IL
41.01
-87.82
2,091
1924-1998

Kankakee
Momence
IL
41.16
-87.67
2,294
1916-1998

Spoon
Seville
IL
40.49
-90.34
1,636
1915-1998

La Moines
Ripely
IL
40.03
-90.63
1,293
1922-1998

Meramec
Steelville
MO
38.00
-91.36
781
1923-1998

Bourbeuse
Union
MO
38.45
-90.99
808
1922-1998

Big
Byrnesville
MO
38.36
-90.65
917
1923-1998

Meramec
Eureka
MO
38.51
-90.59
3,788
1922-1998

Lower Missouri Basin

Yellowstone
Corwin Springs
MT
45.11
-109.21
2,623
1911-1998

Clarks Fork
Belfry
MT
45.01
-108.94
1,154
1922-1998

Yellowstone
Billings
MT
45.80
-107.53
11,795
1929-1998

Big Sioux
Akron
IA
42.84
-95.44
8,424
1929-1998

North Platte
Northgate
CO
40.94
-105.66
1,431
1916-1998

Bear
Morrison
CO
39.65
-104.80
164
1920-1998

Elkhorn
Waterloo
NE
41.29
-95.72
6,900
1929-1998

Nishnabottna
Hamburg
IA
40.63
-94.37
2,806
1929-1998

Grand
Gallatin
MO
39.93
-92.06
2,250
1921-1998

Thompson
Trenton
M)
40.08
-92.36
1,670
1929-1998

Gasconade
Jerome
MO
37.93
-90.02
2,840
1924-1998

Flow sequences of the first set of sites were structured from the daily flows taken from the Hydro-Climatic Data Network (HCDN) developed by Slack, Lumb and Landwehr (1993). The structured flows were the set of annual (October 1 through September 30) extreme flows for various durations, varying from the annual 

 low flow to the 

annual mean flow to the annual 

 high flow. The set of structure flows is referred to as the extreme flow spectrum. See Appendix A and Appendix B.

For purpose of study, the flow sequences all spanned the 70 year period 1927 through 1998. The period is the longest common period at the sites in the two basins.

The second set formed by the partition of the 44 sites in the two basin consists of 7 sites in the Upper Mississippi basin and 7 sites in the Lower Missouri basin, where 2 sites in the Upper Mississippi basin are also in the first set. See Table 2.

Table 2:  General Description of Flow Sites on the Upper Mississippi and Lower Missouri Rivers

Locale
State
Lati-        tude     (deg.)
Longi   tude     (deg.)
Drainage Area           (sq. mi.)
Period of observed Sequence

Upper Mississippi River

St. Paul
MN
45.00
-93.17
36,800
1867-1995

Winona
MN
44.03
-91.62
59,200
1885-1995

Dubuque
IO
42.52
-90.68
82,000
1879-1996

Clinton
IO
41.25
-90.20
85,600
1875-1996

Keokuk
IO
40.38
-91.42
119,000
1875-1996

Hannibal
MO
39.68
-91.33
137,000
1879-1996

St. Louis
MO
38.67
-90.25
697,013
1861-1995

Lower Missouri River

Sioux City
IO
42.50
-96.47
314,600
1898-1997

Omaha
NE
41.25
-96.00
322,820
1889-1997

Nebraska City
NE
40.68
-95.83
414,439
1889-1997

St. Joseph
MO
39.77
-94.87
429,340
1889-1997

Kansas City
MO
39.03
-94.55
489,162
1889-1997

Booneville
MO
38.97
-92.71
505,710
1889-1997

Hermann
MO
38.71
-91.43
528,200
1889-1997

The flow sequences of the second set of sites are annual peak flows. For purpose of study, all the sequences at sites along the Upper Mississippi river spanned the 100-year period 1896-1995, and all the sequences along the Lower Missouri river spanned the 100-year period 1898-1997.

Geographic Distribution of Sites

The geographic distributions of the sites belonging to the two sets are shown  

schematically in Figures 1 and 2.
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Statistical Descriptors of Sequences

The sequences are assessed in real space and in log space, and on an at-site basis and on a regionalized basis. An arbitrary sequence of length 

, 

 in real space, on an at-site or regionalized basis, is described in terms of the standard statistical descriptors, namely, the mean , 

, standard deviation, 

, the coefficient of variation, 

, coefficient of skewness, 

, and the coefficient of kurtosis, 

, where




(1)
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Description in log space, on an at-site or regionalized basis, is given by replacing 

 by 

.

See Appendix C.

Risk and Uncertainty

The notions of risk and uncertainty are central to water management. Federal water agencies deal with risk and uncertainty following the definitions of risk and uncertainty given by the U.S. Water Resources Council (1983) in the Economic and Environmental Principles and Guidelines for Water and Related Land Resource Implementation Studies. The Council’s report is referred to herein as the Principles and Guidelines. The definition of risk is fairly clear, however, the definition of uncertainty is murky. Often precise definitions of terms are not necessary. But in cases where imprecision in the definition of terms limits the range of view of the issues under study, clear definitions of terms are warranted. Such is the case with the definition of uncertainty in water management. 

Principles and Guidelines Perspective

In the Principles and Guidelines, risk and uncertainty are defined in the context of situations that relate to the ability to describe potential outcomes in probabilistic terms. Outcomes may be interpreted as possible consequences sequel to an act, i.e. a decision. Within this context, the Council states that



situations of risk are detained [defined] as those in which the potential outcome can be described in reasonably well-known probability distributions such as the probability of particular flood events

and that



situations of uncertainty are defined as those in which potential outcomes cannot be described in objectively known probability distribution.

In the case of risk, the potential outcomes can be described in “reasonably well known probability distributions.” It does not matter if the probability distribution is reasonably well known or not. What matter is that risk entails probability. The extend to which the probability distribution is known affects how well risk can be assessed. It should be noted that linking risk to probability leaves open the question whether probability is best interpreted as being objective or personalistic. Addressing the question is outside the scope of this study.

In the case of uncertainty, the Principles and Guidelines state that the outcomes “can not be described [by] objectively known probability distributions” because as stated later, “there are no known probability distributions to describe uncertain outcomes.” It is unclear what the Principles and Guidelines mean by there being “no known probability distributions.” Are uncertain outcomes governed by a probability law with which one has no familiarity? Is the governing probability law unknown because all the potential outcomes are unknown? Is the probability law unknown because the potential outcomes are not governed by a  probability law? Is the probability law unknown because the law is not an objective law but a stated degree of belief that accords with the calculus of probability? 

Risk and uncertainty are said to derive from measuring error and from the variability that is inherent in natural, social and economic processes. No less important are sampling errors in parameter estimates that derived from “short” finite lengths of observations on natural, social and economic processes in cases where the processes may be considered to be stochastic processes. 

The Principles and Guidelines state that some risks and uncertainties can be eliminated through increased project costs or through reduction in program benefits, while others can not. Elimination of risk to a degree, i.e. reduction in risk, may follow from various actions, e.g., collection of additional information, using techniques that offer higher orders of approximation, incorporating more stringent factors of safety into the system design, hedging on committing to large capital investments early in the development stage, and conducting sensitivity analyses of the estimated costs and benefits of alternative system designs. Adding robustness, redundancy and resilience to project designs effects a reduction in risk with the occurrence of greater project costs. See Matalas and Fiering (1977).

Alternative Perspective

Risk relates to the chance occurrence of something unwanted. Rescher (1983) expressed risk as the chancing of negativity and noted that there is a difference in taking a risk and in facing a risk. To take a risk is to make a conscious decision that 

enhances the occurrence of some unfortunate event., e.g. the loss of property or life as a result of an extreme flood sequel to deciding to dwell on the flood plain. To face a risk is to be so positioned that harm might be experienced, e.g. the situation of the residents of Johnstown, Pennsylvania on the morning of May 31, 1889.

Risk, 

, is often measured as
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where 

 denotes the adverse consequence whose occurrence with probability 

 is sequel to a specific act, i.e. a (flood management) decision. Adverse consequence refers to damage or loss of property or to injury or loss of life. Eq. (6) defines risk as an expected value. In choosing among risks, one may choose that risk having the smaller expected value. However, the expected value does not preclude the use other measures of  risk.

In taking or facing risk, one must contend with uncertainty, where uncertainty may derive from imperfect knowledge or from incomplete knowledge. Imperfect knowledge presumes that all the possible consequences (outcomes) of an act, i.e. decision, are known or could be known with the expenditure of resources prior to the act. In effect, the sample space is known and therefore probabilities, objective or otherwise, can be assigned to the possible outcomes. Knowledge is said to be imperfect because, though we know that one of a set of possible outcomes will follow from a decision, we do not know with certainty which outcome it will be. Because our knowledge is imperfect, our distribution of the total probability mass over all the outcomes is very likely to be questionable.

Incomplete knowledge, i.e., ignorance, implies that not only are some if not all the outcomes unknown at the time a decision is to be made, they are unknowable. Thus the sample space is incomplete and expenditure of resources can not reveal the unknown outcomes. Because we do not know just what it is that is unknown, resources can not be directed to make that which is unknown known. As put by Shackle (1949), 

knowledge can not be gained before its time. Because the sample space is incomplete, probabilities, personalistic or otherwise, can not be assigned to those outcomes that are not known. 

A situation of incomplete knowledge is a situation of a special case of uncertainty that Davidson (1991) termed “true” uncertainty. By defining incomplete knowledge as a situation of true uncertainty, the term uncertainty can be used in cases where risk and uncertainty are understood within the same linguistic context, namely, that of  probability. For example, it seems natural to speak of the uncertainty of a gain or a loss and to speak of the risk of a loss rather than the uncertainty of a gain. It seems more natural to speak of the uncertainty in statistical estimates rather than the risk in statistical estimates. Though a risky situation may not be a strictly uncertain situation, risk and uncertainty may each be mapped into probability. The sampling errors associated with estimates of statistical parameters are described by a probability distribution. 

By differentiating between uncertainty and true uncertainty, one may identify situations where a metric other than probability must be used to measure true uncertainty. If such situations do not exist within the domain of water management, then a risky situation may be viewed similarly as an uncertain situation, situations calling for a probability measure. It follows that all possible outcomes are known and thereby, the total probability mass may be distributed over the outcomes. If there are situations of true uncertainty, then the general framework under which water management is conducted will need to be reviewed by the federal water agencies and other responsible parties in the business and academic community. Clearly, the definition of uncertainty in the Principles and Guidelines needs clarification. Discussion of a metric of true uncertainty is outside the scope of this study.

Flood Frequency Analysis

Rafter (1895) was among the first to suggest adopting a probabilistic perspective of floods. Within 20 years, flood frequency analysis evolved into its present form through the work of Hazen (1914), Fuller (1914) and others. Basically, flood frequency analysis 

presumes, implicitly at least, a sequence of observed annual floods to be a realization of a sequence of independent and identically distributed random variables. The observations are ranked from smallest to largest and to each, a probability is assigned. The assigned probability, defined in terms of the total number of observations in the sequence, 

, and the rank value, 

, of the ordered observations, where 

, is referred to as the plotting position, an estimate of the probability, 

, of exceeding the magnitude of the 

 ranked flood. A probability distribution of specific mathematical form is fitted to the ranked observations, where the parameters of the distribution are estimated from the observations by a specific statistical method. From the fitted distribution, a flood magnitude, 

, corresponding to a specified exceedence probability, 

, can be obtained graphically, analytically or by numerical integration. 

The inverse of the exceedence probability is referred to as the return period,
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The quantity 

 is referred to as the 

 flood, the flood having an exceedence probability of 

.

In the United States, flood frequency analysis is currently conducted by federal agencies in accordance with Bulletin 17-B. Basically, the bulletin spells out the procedure for estimating the 

 flood via fitting the Log-Pearson Type III distribution to an ordered set of observed floods. The estimates of the exceedence probabilities of the observations are defined as Weibull plotting positions,
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where, 

 denotes the estimated exceedence probability of the 

 ranked flood, i.e. the probability of a flood 

 exceeding the observed flood of rank 

, 

, in a sequence of 

 observed floods.

The Log-Pearson Type III distribution is fitted using the method of moments to estimate the location and scale parameters of the distribution. The measure of the distribution’s skewness (degree of asymmetry) is estimated through a procedure that takes into account estimates of measures of skewness of observed flood sequences at other sites in the “vicinity” of the primary site of interest, the site where an estimate of the 

 flood is specifically sought.

Bulletin 17-B allows for estimating the 

 flood via fitting an alternative distribution if it can be shown that use of an alternative distribution is warranted, i.e. better in some meaningful way. However, the bulletin does not set forth explicit terms on which judgment can be made as to whether or not the use of an alternate distribution is warranted.

The 

 flood is unknown, but it is, of course, knowable. It would be a contradiction in terms to say that the 

 flood is unknowable. An estimate of the 

 flood is a conditional statement – the estimate is conditioned on an assumed distribution, in particular the Log-Pearson Type III distribution. As a conditional statement, reference may be made to the uncertainty in the value of the 

 flood. Traditionally, concern over the uncertainty in the estimate of the 

 flood has focused on the following factors: 1) the length of the sequence, 2) the choice of the distribution function, 3) the method used to estimate the parameters of the chosen distribution function and 4) the definition of the plotting position. Because the length of a sequence can only increase with the passage of time, efforts are made to effect an increase in record length through correlation with sequences of greater length, i.e. to effect a transfer of information to the site of interest  from sites having longer sequences. These efforts are referred to as regionalization.

The issue of global warming has broaden the concern over uncertainty in the 

 flood with focus on trend in the observations of annual floods. This focus is on questioning the presumption that a sequence of observed floods to be a realization of a sequence of identically distributed random variables. Hydrologic time series are short on a geophysical scale so we can never be certain that a trend is not part of a slow 

oscillation unless the series ends. See e.g. Kendall and Stuart (1966). Moreover, we can never be certain that oscillatory movement is not a reflection of persistence implying that a sequence of observed floods are not a realization of a sequence of independently distributed random variables. Thus, uncertainty in the 

 flood as a consequence of global warming calls into question the assumption that a sequence of observed floods is a realization of a sequence of independent and identically distributed random variables.

An Assessment of Trend and Persistence

The issue of global warming has prompted an examination of hydrologic time series for trends. Trend is viewed as a sustained change in flow with time, where change is in terms of the mean or some other statistical characteristic of an observed flow sequence. An observed hydrologic flow sequence is regarded as a realization of a stochastic process. In the presence of trend, the stochastic process is in some way non-stationary. For example, the process may be nonstationary in the mean, but stationary in all other respects. If the process is nonstationary in the 

 order moment, presuming that the moment exists, then the process is non-stationary in all lower order moments. 

If a trend is indeed a trend, positive or negative, it has a beginning and an end. A trend can not persist indefinitely. If a trend were to persist indefinitely, flow would either exceed the carrying capacity of the basin or the basin would become dry. See Olsen et al (1999). A trend may in fact be a “trend” reflecting an oscillatory wave of low frequency. More generally, a time series may be a composition of a large number of oscillatory waves of varying frequency and such that the time series is stationary though perhaps persistent. Stationary persistence is measured by the dependence between flows at different times, where the degree of dependence is determined by the interval between the times and not by the times themselves. If the frequency of a wave translates into a period greater than the observation period of the time series, then the series may appear to be trending. See e.g. Planning & Management Consultants, Ltd. (1999).

The distinction between trend and persistence is operationally important. In particular, the distinction is important to flood frequency analysis. Heretofore, flood frequency analyses have been conducted under the assumption, implicit or otherwise, that flood sequences are realizations of stationary stochastic processes. More specifically, a flood sequence has been viewed as a sequence of independent and identically distributed (iid) random variables, a realization of a purely random process.

Under the iid assumption, the future mirrors the past, whereby an estimate of a specific flow quantile based on an observed flow sequence differs from the quantile by amount within the bounds of sampling error. The distribution of sampling errors is the same for all future sequences of length equal to that of the observed sequence spanning the past. In the presence of trend, flows may be independently distributed, but not identically distributed. In the presence of persistence, flows may be identically distributed, but not independently distributed. In the presence of both trend and persistence, the flows are neither identical or independently distributed. If the iid assumption does not hold, then the uncertainty in estimates of flow quantiles can not be accounted for in terms of classical sampling errors, i.e. by sampling errors presuming the iid assumption holds implying that an observed flow sequence is a realization of a purely random process.

In the following discussions, trend is limited to trend in the mean and is measured by the regression of flow on time. Persistence is limited to Markovian persistence and is measured by the first order autocorrelation coefficient. Limiting trend to linear trend over the period of observation and limiting persistence to Markovian persistence is meant to provide a first-order account of trend and persistence. In actuality, trend and persistence, if they exist, may be of more complicated forms. Linear trend is measured by the coefficient of linear regression of flow on time. Markovian persistence is measured as linear temporal dependence by the first order autocorrelation coefficient.

Account is taken of residual trend, i.e. trend following de-Markoving flow sequences, and residual persistence, i.e. persistence following de-trending flow sequences. The analytical structure of de-Markoving and de-trending are given in Appendix D.

Selected Elements of Flow Spectrum: Annual 1-Day High, Mean and 1-Day Low

At the selected sites in the Upper Mississippi and Missouri basins, an assessment is made of trends and persistence in the sequences of annual 1-day high flows, annual mean flows and annual 1-day low flows. The assessment is summarized in Tables 3 through 5. For other elements of the flow spectrum, the assessment of trend and persistence is given in Appendix E

Table 3: Trend and Persistence of Annual 1-Day High Flows



Trend



Persistence



Obs.
DT
DM

Obs.
DT
DM


Upper Mississippi Basin

St. Croix
0.003
0.000
0.004

0.186
0.182
0.013

Jump
-0.002
0.000
-0.002

0.083
0.081
-0.003

Black
-0.006
0.000
-0.006

-0.112
-0.127
-0.005

Maquaketa
-0.007
0.000
-0.007

0.082
0.070
-0.010

Mississippi
0.013*
0.000
0.011

0.139
0.072
-0.020

Rock
0.003
0.000
0.003

0.015
0.005
0.005

Sugar
-0.014
0.000
-0.014*

0.081
0.017
0.017

Pectonica
-0.010
0.000
-0.010

-0.007
-0.032
0.008

Cedar
0.000
0.000
0.000

0.081
0.080
0.014

Skunk
0.008
0.000
0.009

-0.048
-0.079
-0.002

Mississippi
0.016**
0.000
0.013*

0.143
0.034
-0.006

Des Moines
0.006
0.000
0.007

-0.037
-0.056
-0.005

Raccoon
0.013*
0.000
0.012*

-0.051
-0.118
0.017

Iroquois
0.017**
0.000
0.013*

0.215
0.115
0.031

Kankakee
0.025**
0.000
0.019**

0.223
-0.083
-0.052

Spoon
0.014**
0.000
0.014*

0.039
-0.054
-0.002

La Moines
0.017**
0.000
0.014*

0.241*
0.126
0.007

Meramec
0.007
0.000
0.003

-0.063
-0.074
0.034

Bourbeuse
0.015**
0.000
0.014*

0.053
-0.038
-0.007

Big
0.015**
0.000
0.013*

0.118
0.031
-0.006

Meramec
0.012*
0.000
0.012

0.028
-0.031
-0.003










Average
0.007
0.000
0.006

0.067
0.006
0.001

Stdev
0.010
0.000
0.009

0.101
0.085
0.018


Missouri Basin

Yellowstone
0.014*
0.000
0.013*

0.153
0.076
0.009

Clarks Fork
0.009
0.000
0.009

0.211
0.183
0.066

Yellowstone
0.011*
0.000
0.011

0.214
0.169
0.059

Big Sioux
0.008
0.000
0.009

-0.022
-0.052
0.008

North Platte
0.002
0.000
0.002

-0.033
-0.035
0.001

Bear
-0.006
0.000
-0.007

-0.035
-0.051
-0.008

Elkhorn
0.010*
0.000
0.011

-0.090
-0.133
0.001

Nisnabottna
0.014**
0.000
0.010

0.039
-0.036
0.006

Grand
0.009
0.000
0.010

0.007
-0.043
-0.001

Thompson
0.010*
0.000
0.007

0.263*
0.232
-0.019

Gasconade
0.007
0.000
0.008

-0.036
-0.058
0.006










Average
0.008
0.000
0.007

0.061
0.023
0.012

Stdev
0.006
0.000
0.005

0.125
0.121
0.026

Table 4: Trend and Persistence in Annual Mean Flows



Trend



Persistence



Obs.
DT
DM

Obs.
DT
DM


Upper Mississippi Basin

St. Croix
0.017**
0.000
0.011

0.535**
0.473**
0.033

Jump
0.004
0.000
0.004

0.261*
0.252*
0.068

Black
0.010*
0.000
0.009

0.179
0.142
0.035

Maquaketa
0.014**
0.000
0.008

0.366**
0.309*
0.020

Mississippi
0.022**
0.000
0.012*

0.471**
0.333*
0.022

Rock
0.020**
0.000
0.013*

0.376**
0.235
0.050

Sugar
0.016**
0.000
0.010

0.347*
0.261*
0.030

Pectonica
0.015**
0.000
0.010

0.312*
0.230
0.044

Cedar
0.021**
0.000
0.014*

0.343*
0.197
-0.013

Skunk
0.015**
0.000
0.011

0.173
0.087
0.021

Mississippi
0.024**
0.000
0.014*

0.441**
0.260*
0.004

Des Moines
0.021**
0.000
0.015*

0.351*
0.204
-0.034

Raccoon
0.022**
0.000
0.015*

0.296*
0.128
0.002

Iroquois
0.021**
0.000
0.014*

0.304*
0.149
-0.014

Kankakee
0.027**
0.000
0.017**

0.394**
0.122
-0.067

Spoon
0.015**
0.000
0.013*

0.071
-0.040
0.006

La Moines
0.013**
0.000
0.010

0.169
0.091
0.018

Meramec
0.011*
0.000
0.007

0.276*
0.238
0.004

Bourbeuse
0.012*
0.000
0.009

0.185
0.137
-0.021

Big
0.011*
0.000
0.008

0.267*
0.228
0.030

Meramec
0.014**
0.000
0.010

0.299*
0.236
0.002










Average
0.016
0.000
0.011

0.306
0.203
0.011

Stdev
0.005
0.000
0.003

0.111
0.106
0.030


Missouri Basin

Yellowstone
0.017**
0.000
0.013*

0.266*
0.178
-0.077

Clarks Fork
0.008
0.000
0.007

0.157
0.135
-0.008

Yellowstone
0.016**
0.000
0.011

0.347*
0.271*
-0.038

Big Sioux
0.023**
0.000
0.014*

0.487**
0.348*
-0.045

North Platte
0.008
0.000
0.006

0.192
0.162
0.007

Bear
0.003
0.000
0.002

0.020
0.018
-0.002

Elkhorn
0.024**
0.000
0.013*

0.490**
0.335*
-0.136

Nisnabottna
0.024**
0.000
0.016**

0.280*
0.080
-0.041

Grand
0.013**
0.000
0.011

0.088
0.008
-0.002

Thompson
0.013**
0.000
0.011

0.132
0.057
-0.001

Gasconade
0.012*
0.000
0.008

0.302*
0.260*
-0.007










Average
0.015
0.000
0.010

0.251
0.168
-0.032

Stdev
0.007
0.000
0.004

0.152
0.122
0.043

Table 5: Trend and Persistence in 1-Day Low Flows



Trend



Persistence



Obs.
DT
DM

Obs.
DT
DM


Upper Mississippi Basin

St. Croix
0.032**
0.000
0.015*

0.719**
0.514**
-0.008

Jump
0.029**
0.000
0.019**

0.533**
0.268*
0.011

Black
0.031**
0.000
0.020**

0.458**
0.109
-0.081

Maquaketa
0.017**
0.000
0.011

0.427**
0.340*
0.058

Mississippi
0.019**
0.000
0.010

0.495**
0.395**
0.002

Rock
0.027**
0.000
0.018**

0.347*
0.053
-0.052

Sugar
0.036**
0.000
0.013*

0.748**
0.446**
0.000

Pectonica
0.030**
0.000
0.012*

0.633**
0.411**
0.007

Cedar
0.020**
0.000
0.010

0.489**
0.387**
0.054

Skunk
0.017**
0.000
0.012

0.365**
0.271*
0.062

Mississippi
0.024**
0.000
0.014*

0.452**
0.273*
0.032

Des Moines
0.026**
0.000
0.013*

0.586**
0.426**
-0.012

Raccoon
0.022**
0.000
0.018**

0.172
-0.023
-0.009

Iroquois
0.023**
0.000
0.018**

0.255*
0.057
-0.003

Kankakee
0.020**
0.000
0.013*

0.333*
0.191
-0.057

Spoon
0.015**
0.000
0.012*

0.121
0.032
0.010

La Moines
0.007
0.000
0.006

0.193
0.169
0.038

Meramec
0.021**
0.000
0.008

0.634**
0.552**
-0.029

Bourbeuse
0.014**
0.000
0.006

0.476**
0.435**
-0.054

Big
0.020**
0.000
0.011

0.459**
0.357*
0.010

Meramec
0.017**
0.000
0.008

0.476**
0.402*
-0.044










Average
0.022
0.000
0.013

0.446
0.289
-0.003

Stdev
0.007


0.000
0.004

0.170
0.169
0.040


Missouri Basin

Yellowstone
0.008
0.000
0.004

0.151
0.133
-0.050

Clarks Fork
-0.010
0.000
-0.008

0.404**
0.375**
-0.008

Yellowstone
0.002
0.000
0.001

0.160
0.157
-0.005

Big Sioux
0.029**
0.000
0.011

0.698**
0.539**
-0.086

North Platte
0.017**
0.000
0.004

0.571**
0.517**
-0.030

Bear
0.022**
0.000
0.014*

0.414**
0.271*
-0.041

Elkhorn
0.028**
0.000
0.008

0.729**
0.603**
-0.099

Nisnabottna
0.026**
0.000
0.017**

0.354*
0.100
-0.034

Grand
0.015**
0.000
0.011

0.306*
0.233
0.050

Thompson
0.016**
0.000
0.013*

0.203
0.106
0.000

Gasconade
0.013**
0.000
0.004

0.569**
0.530**
-0.036










Average
0.015
0.000
0.007

0.414
0.324
-0.031

Stdev
0.012
0.000
0.007

0.205
0.195
0.041

Annual 1-Day High Flows

The flow sequences do not suggest a strong propensity toward either trend or persistence, particular in term of residual trend and residual persistence. Of the 32 sequences, half have significant trends, but only a third have significant residual trends after de-Markoving. Eight sequences have significant trends at the 1% level but for only one sequence is the trend significant following de-Markoving. De-trending fully accounts for trend

Only two sequences have significant persistence, but none of the sequences have significant residual persistence after de-trending. De-Markoving fully accounts for persistence.

See Figures 3 and 4, below.

Annual Mean Flows

The flow sequences suggest a strong propensity toward trend and persistence. Of the 32 sequences, 27 have significant trends, of which 22 have significant trends at the 1 % level. Following de-Markoving, only 13 sequences have significant residual trends, of which only 2 have significant trends at the 1% level.

Of the 32 sequences, 19 have significant persistence, of which only 7 have significant trends at the 1 % level. Following de-trending, 9 sequences have significant trends, but only 1 sequence has significant trend at the 1% level.

See Figures 5 and 6, below.

The averages of the measures of trend and persistence of the sequences of annual mean flows are about twice as large as the averages of the measures for the sequences of annual 1-day high flows. The standard deviations of the measures are nearly the same for the sequences of annual 1-day high flows and the sequences of annual mean flows. Refer to Tables 1 and 2.

Annual 1-Day Low Flows

The flow sequences show a very strong propensity toward trend and persistence. Of the 32 sequences, 28 have significant trends, all which are significant at the 1% level. Following de-Markoving, 15 sequences have significant trends, but only 6 sequences have significant residual trends at the 1% level. 

Of the 32 sequences, 26 have significant persistence, and of these, 21 have significant persistence at the 1 % level. Following de-trending, 20 sequences have significant persistence, of which 13 have significant residual persistence.

See Figures 7 and 8, below.

The averages of the measures of trend in the sequences of annual 1-day low flows are about the same as the averages of the measures of trend in the sequences of annual mean flows, however, the standard deviations of the measures of trend in the annual 1-day low flow sequences is greater than that in the annual mean flow sequences. The annual 1-day low flow sequences yield somewhat larger averages and standard deviations of the measures of persistence. Refer to Tables 4 and 5.
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Other Elements of Flow Spectrum

Assessment of trend and persistence is summarily given in Appendix E. A numerical account of the shift in level of significance of trend and persistence following de-Markoving and de-trending is also presented in Appendix E, where account includes the shifts with respect to the sequences of annual 1-day high flows, annual mean flows and annual 1-day low flows.

The geographic distributions of the levels of significant of trends and persistence and the levels of significant residual trends and residual persistence are shown in Appendix E.

A Comparison of Effects of Trend and Persistence

Let 

 denote the elevation of water in a basin corresponding to a flood flow of magnitude 

, and let 

 denote a specific value of elevation. Define
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(9)

where 

 denotes a “flood” and 

 denotes “no flood”. In addition to binomial outcomes, assume that floods are identically and independently distributed over time, whereby the flow process is Bernoullian. The probabilities of the outcomes are
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(10)
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(11)

The number of floods, 

 , that occur in a period of 

 years may vary from 

 to 

 and is distributed with expectation


 EMBED "Equation" \* mergeformat  


(12)

and variance
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(13)

See e.g. Johnson and Kotz (1969).

Trend

Assume that the probability of a flood changes over time due to various factors, notably due to changes in climate or changes in land use. Assume further that floods are temporally independent, i.e the flow process in non-Bernoullian – floods are non-identically and independently distributed over time. In year 

, where 

, the probability of a flood is 

, whereby 

. In general, 

. 

The number of floods in a period of 

 years is distributed with expectation
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(14)

and variance
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(15)

If 

, then Eqs. (14) and (15) reduce to Eqs. (12) and 13).

The variance of the 

, 

, is given by
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(16)

whereby Eq. (15) may be expressed as
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(17)

where 

. If 

, Eq.(17) reduces to Eq. (13). See e.g. Kenny and Keeping (1956) and Uspensky (1937).

The expected number of floods within a period of 

 years is the same whether the 

 vary with 

 or not. From Eq. (17), it is noted that 

 regardless of how the 

 vary with 

. The variability of flooding within an 

 year period is less if the 

 vary with 

 than if 

 is a constant 

. In general, the manner in which the 

 vary with 

 effects the degree to which 

. If the slope of an upward linear trend in the 

 is equal to the absolute value of the slope of a downward linear trend, then the degrees to which 

 are the same 

Persistence

Consider the non-Bernoullian flood process where floods are identically and non-independently distributed over time. It is assumed that temporal dependence, persistence, has the following Markovian structure formulated by Thomas (personal communication: 1957).

Eqs. (10) and (11) hold. The conditional, i.e. transition probabilities, the probabilities that particular outcomes will occur in one year given that a certain outcome occurred in the previous year are noted as
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(18)

The joint probabilities, i.e. the probabilities that particular outcomes will be manifest in consecutive years are
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(19)

From the calculus of probability
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(20)

whereby
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It follows that 
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(22)
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and therefore
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(24)

Furthermore, 
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(25)

and therefore
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(26)

whereby, the first order autocorrelation, 

, is
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(27)

It can be shown that 
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(28)

further illustrating the Markovian structure of the non-Bernoullian process having the transition probabilities defined by Eq. (18).

The number of floods within a period of 

 years is distributed with expectation
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(29)

and variance
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(30)

The term 

 may be expressed as
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(31)

whereby
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(32)

and therefore, Eq. (30) may be expressed as
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(33)

The expected number of floods in the non-Bernoullian case marked by temporal dependence, is the same as in the strictly Bernoullian case or in the non-Bernoullian case marked by trend. It is readily noted that
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Trend vs. Persistence

Trend and persistence have no effect on the expected number of floods above a threshold level of elevation. The effects of Markovian persistence with 

 and of trend on the variability of the number of floods above a threshold level of elevation are 

counter to one another – one tending to mitigate the effect of the other. The net effect of trend and Markovian persistence with 

 on the variability of the number of floods above a threshold level of elevation may be negligible if the levels of trend and persistence are low. Thus, variability in the number of floods above a threshold level of elevation in keeping with a Bernoullian structure of floods does not necessarily imply the absence of trend and persistence.

The effect of Markovian persistence with 

 compounds the effect of trend – both reduce the variability of the number of floods above a threshold level of elevation without either effecting the expected number of floods. Thus, variability in the number of floods above a threshold level of elevation smaller than expected via a Bernoullian process is not necessarily the consequence of trend alone or persistence alone. 

The following examples illustrates the effects of trend and persistence on the variability in the number of floods above a threshold level of elevation. 

Bernoullian Case

In the Bernoullian case, floods are identically and independently distributed – the probability that a flood will exceed a threshold elevation does not vary from one year to the next, and the fact that the threshold had or had not been  exceeded in one year has no bearing on whether the threshold will or will not be exceeded in any subsequent year. The expected values and variances of the distribution of the number of floods exceeding the threshold in a period of 

 given the exceedence probabilities 

 are shown in Table 6. The corresponding probabilities of non-exceedence are 

. The specific exceedence probabilities translate as the 

 year floods. 

Table 6: Expected Value and Variance of the Distribution of the Number of Floods exceeding a Threshold Elevation  – Bernoulli Process

n
p=0.04
p=0.02
p=0.01
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5
0.20
0.1920
0.10
0.0980
0.05
0.0495

10
0.40
0.3840
0.20
0.1960
0.10
0.0990

25
1
0.9600
0.50
0.4900
0.25
0.2475

50
2
1.9200
1
0.9800
0.50
0.4950

100
4
3.8400
2
1.9600
1
0.9900

Non-Bernoullian Case Marked by Trend

In the non-Bernoullian case marked by trend, floods are non-identically and independently distributed – the probability that a flood will exceed a threshold elevation varies from one year to the next, but the fact that the threshold had or had not been exceeded in one year has no bearing on whether the threshold will or will not be exceeded in a subsequent year.

For 

, 
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(35)

Given 

 and 

, 
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whereby
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The parameter 

 is the slope of the linear trend in the 

. The effect of a negative linear trend in the 

 on the expected value and variance of the number of times floods exceed the threshold elevation in a period of 

 years is the same as in the case of a positive trend where the absolute values of the positive and negative slopes are equal.

The values of 

, 

 and 

 for specific values of 

, 

 and 

 are given in Table 7.

Table 7: Parameters Describing the Variation of 

 with 



n
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3
5.5
13
25.5
50.5
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0.04
0.04
0.04
0.04
0.04
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0.0175
0.0078
0.0029
0.0014
0.007
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3
5.5
13
25.5
50.5
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0.02
0.02
0.02
0.02
0.02
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0.0075
0.0033
0.0012
0.0006
0.0003
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3
5.5
13
25.5
50.5
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0.01
0.01
0.01
0.01
0.01
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0.0025
0.0011
0.0004
0.0002
0.0001

The expected values and variances of the distribution of the number of floods exceeding the threshold in a period of 

 for the mean exceedence probabilities 

 are shown in Table 8.

Table 8: Expected Value and Variance of the Distribution of the Number of Floods exceeding a Threshold Elevation  as Affected by Trend


 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  





 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



5
0.2
0.1889
0.1
0.0974
0.05
0.0494

10
0.4
0.3790
0.2
0.1951
0.1
0.0989

25
1
0.9489
0.5
0.4880
0.25
0.2473

50
2
1.8988
1
0.9761
0.5
0.4946

100
4
3.7976
2
1.9523
1
0.9891

From Eqs. (12) and (14), it is noted that the expected value of the distribution of the number of floods that exceed the threshold elevation within a period of 

 years in the non-Bernoullian case marked by trend is the same as that in the Bernoullian case – 

. For a given value of 

, 

 and 

 decrease as 

 decreases. For a given value of 

, 

 and 

 increase as 

 increases. Refer to Tables 7 and 8.

From Eqs. (13) and (17), it is noted that the variance of the distribution of the number of floods that exceed the threshold elevation within a period of 

 years in the non-Bernoullian case marked by trend is less than that in the Bernoullian case – 

. For a given value of 

, 

 and 

 decrease as 

 decreases. For a given value of 

, 

 and 

  increase as 

 increases. Moreover, for a given value of 

, the difference between 

 and 

 decreases at an increasing rate as 

 decreases. In the case where 

 is very small, the effect of trend on the variance of the distribution of the number of floods that exceed the threshold elevation within a period of 

 years is small. Refer to Tables 7 and 8.

Non-Bernoullian Case Marked by Markovian Persistence

In the non-Bernoullian case marked by persistence, floods are identically and non-independently distributed – the probability that a flood will exceed a threshold elevation does not vary from one year to the next, but the fact that the threshold had or had not been exceeded in one year has a bearing on whether the threshold will or will not be exceeded in any subsequent year.

For specific values of 

, 

 and 

, the expected value and variance of the distribution of the number of floods that exceed a threshold elevation are given in Tables 9a and 9b.

Table 9a: Expected Value and Variance of the Distribution of the Number of Floods exceeding a Threshold Elevation  as Affected by Persistence – 



n
p=0.04
p=0.02
p=0.01
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5
0.2
0.2252
0.1
0.1149
0.05
0.0581

10
0.4
0.4599
0.2
0.2347
0.1
0.1186

25
1
1.1639
0.5
0.5940
0.25
0.3001

50
2
2.3372
1
1.1929
0.5
0.6026

100
4
4.6839
2
2.3907
1
1.2076

Table 9b: Expected Value and Variance of the Distribution of the Number of Floods exceeding a Threshold Elevation  as Affected by Persistence – 



n
p=0.04
p=0.02
p=0.01
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5
0.2
0.1634
0.1
0.0834
0.05
0.0421

10
0.4
0.3205
0.2
0.1636
0.1
0.0826

25
1
0.7918
0.5
0.4041
0.25
0.2041

50
2
1.5773
1
0.8051
0.5
0.4066

100
4
3.1482
2
1.6069
1
0.8116

From Tables 9a and 9b, it readily seen that persistence effects an increase (decrease) in the variance of the distribution of the number of floods that exceed the threshold elevation within a period of 

 years if 

 (

).

Right and Left Tails of Flood Distributions 

Overview

In conducting flood frequency analyses, Federal agencies are guided by Bulletin 17-B The Bulletin calls for fitting the Log-Pearson Type III distributions to ordered sequences of observed flood flows, unless there are strong grounds for fitting another distribution. The Log-Pearson Type III distribution presumes that the logs of the observed flows are distributed as Pearson Type III. The Pearson Type III distribution may be positively or negatively skewed. As skewness approaches zero, the Pearson Type III distribution approaches the Normal distribution. Thus, the Log-Normal distribution is a special case of the Log-Pearson Type III distribution. 

The logs of observed flood flows tend to yield negative values of skewness, whereby, the Normal distribution provides a relatively poor fit to the logs of the flows, and consequently the Log-Normal distribution provides a relatively poor fit to the flows. The Pearson Type III distribution in log space and the Log-Pearson Type III distribution in real space provide better fits. It is noted that the Normal distribution is defined by two parameters, whereas the Pearson type III distribution is defined by two or at most three parameters, one of which measures the skewness of the distribution. 

Evaluation of the goodness of fit of a particular distribution is generally in reference to the overall fit of the distribution, i.e. the fit over the full range of an ordered set of flows. An analytically defined probability distribution may be fitted to a set of observations by one of several statistical methods. In hydrology, the most common procedures are those of moments, maximum likelihood, and L-moments. These methods are based on relations between the parameters of the distribution to be fitted and specific statistical averages derived from integration over the range of the distribution. For example, in fitting a Normal distribution, the integration is over the interval 

. In fitting a Log-Normal, the interval of integration is 

, where the lower bound 

 is physically interpreted as base flow. Bulletin 17-B is based on the method of moments. 

The relative poor fit of the Normal distribution in log space, judged in reference to the overall fit, does not preclude the right tail of the Normal distribution, or of some other 

distribution, providing a relatively better fit to the distribution of the larger of the observed flows than the right tail of the Pearson Type III distribution. It is the right tail of the distribution that matters in flood frequency studies. In drought studies, the left tail matters. Few studies consider fitting one tail independently of the other. 

To improve the overall fit of the Log-Pearson Type III distribution, attention is given in Bulletin 17-B to estimating a regional coefficient of skewness applicable to the site at issue. The estimate of skewness is regarded as a principal source of uncertainty in evaluating flood risks at specific sites. The extent to which the left and right tails of the presumed distribution of floods contribute to the skewness of the distribution is open to investigation. Seeking to fit the right tail independently of the left tail affords a basis for assessing the contributions of the tails to the skewness of the distribution. If only the right tail is to be fitted, then the estimate of skewness of the complete distribution, i.e. the distribution extending over both tails may or may not be relevant. The degree relevance is an open question.

The following discussions of fitting the right tail of a distributions to an ordered set of flows are in reference to two cases. The first case considers the regional vector derived from the logs of the flows at specific sites within a region, and the second case considers vector formed by the logs of the elements of the regional vector derived from the flows at the specific sites within the region. For the first case, the distribution of the elements of the regional vector is said to be in log space, whereas, for the second case, the distribution of the logs of the elements of the regional vector is said to be in quasi-log space.

For the purpose of this study, the left tail extends over flows less than the median, and the right tail extends over flows equal to or greater than the median. The median flow is the 

  flow, i.e. the flow having an exceedence probability of 

, where 

. Further study of fitting the right tail independently of the left tail perhaps should consider a three part partition of a distribution to include a central part. With such a partition, the right tail of a distribution would extend over all flows greater than the 

. flood.

Left and Right Tails

From Appendix B, it is noted that in log space, the right tails of the distributions of the elements of the high end of the flow spectrum, i.e. the 

 high flows, tend to vary linearly over the probability scale. The linear tendency suggests that the right tails accord reasonably well with the Normal distribution in log space, and consequently with the Log Normal distribution in real space. In log space, the left tails of the distributions reflect varying degrees of stretchiness relative to the left tail of the Normal distribution. 

The following terminology is introduced. If the right tail of a regionalized distribution is well approximated by the right tail of a Normal distribution, the right tail of a regionalized distribution is said to be right tail Normal. If the left tail of the regionalized distribution lies below (above) the left tail of the Normal distribution, the left tail of the regionalized distribution is said to be left tail super- (sub-) Normal. A left tail that is super- (sub-) Normal is in effect a tail that is stretched (compressed) relative to a Normal left tail. If in fact, the left tail of a regionalized distribution is left tail Normal, then the right tail of the regionalized distribution is said to be sub-  (super-) Normal if the right tail of the regionalized distribution lies below (above) the right tail of a Normal distribution.

For exploratory purposes, the Normal distribution was fitted to the right tail of the regionalized distributions of 

 high flows as follows. The Normal distribution is defined by two parameters, namely the mean and standard deviation. Given that the mean and median are the same for the Normal distribution, the mean was set equal to the median, which for the regionalized distribution in log space is equal to 

 and in quasi-log space is equal to 0. The standard deviation of the Normal distribution is equal to the absolute difference in the values of the normalized logs of flow for exceedence probabilities of 

 and 

. The probability 

 marks the median of the distribution, and the probability 

 marks one of the two inflection points of the  Normal distribution. The other inflection point is marked by the probability 

.

Let 

 denote a regional vector in either log or quasi-log space. By the manner –  the median-median method –  in which the vector was obtained, the vector 

is an ordered set of values, from smallest, 

, to largest, 

. The probability distribution of the elements of the regional vector, 

 is defined in terms of the Weibull plotting position —
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Let 

 denote the Normal cumulative distribution function: 

, where 

, mean=median, and 

, standard deviation, are given by the procedure outlined above. The Normal variate 

 corresponding to 

 is that value for which
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The right tail of the Normal distribution is given by 

 for 

, where
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(41)

Normal distributions fitted to the right tails of regionalized distributions in log space of the 

 high flows for the Upper Mississippi and Missouri basins are shown in Figures 9 and 10, respectively.
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From Figures 9 and 10, it is seen that 1) the Normal distribution provides a reasonably good fit to the right tail of the observed regional distribution in log space of the 

 annual high flows. The left tail of the observed distribution is sub-Normal, and the observed distribution is negatively skewed. These features of the observed regional distribution in log space of the 

 annual high flows relative to the Normal distribution are displayed by the observed regional distributions in log space of the  

 annual high flows for 

, as well as by the observed regional distributions in log space of the annual mean flows. See Appendix F.

The regional distributions in quasi log space of the 

 annual high flows are shown in Figure 11 for the Upper Mississippi basin and in Figure 12 for the Missouri basin.
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The features of the regional distribution of the annual 

 high flows displayed in log space are displayed in quasi-log space. These features are also displayed in quasi-log space by the annual 

 high flows and by the annual mean flows. See Appendix G.

A summary account of the Normal distributions fitted to the right tails of the distributions of the regional vectors in log space and in quasi-log space is given in Table 10.

Table 10: Standard Deviations of Normal Distributions Fitted to Right Tails of Regional Vectors

k
Upper Mississippi Basin
Missouri Basin


Log Space
Quasi-Log Space
Log Space
Quasi-Log Space

1-Day
0.057
0.236
0.053
0.218

3-Day
0.057
0.224
0.052
0.228

7-Day
0.057
0.210
0.053
0.221

14-Day
0.054
0.210
0.057
0.221

30-Day
0.054
0.207
0.063
0.227

60-Day
0.053
0.182
0.083
0.284

90-Day
0.056
0.174
0.081
0.274

180-Day
0.053
0.157
0.079
0.260

AM
0.052
0.172
0.083
0.249

Over the high end of the flow spectrum, the Normal distribution provides a better fit of the right tails of the observed regional distributions for the Upper Mississippi basin than for the Missouri basin. It is noted that 21 sites form the region for the Upper Mississippi basin, whereas 11 sites form the region for the Missouri basin. The Missouri region is more heterogeneous in terms of climate than the Upper Mississippi region. Whether these attributes of the two regions have a bearing on the goodness of fit of the right tails  of the observed regional distributions in log space and in quasi-log space by Normal distributions is an open question. 

For further discussion of the right and left tails of flood distributions see Appendix H.

Comparison of Pearson Type III and Right-Tail Normal Distributions – Annual 1-Day High Flows

In the above discussions, it was shown that in log space and in quasi-log space the Normal distribution provides a good fit to the right tails of regionalized distributions spanning the “high end” of the flow spectrum, that is for the regionalized sequences of 

 high flows, where 

. The two spaces are in reference to two cases. The first case refers the regional vector derived from the logs of the flows at specific sites within a region, and the second case refers vectors formed by the logs of the elements of the regional vector derived from the flows at the specific sites within the region. For the first case, the distribution of the elements of the regional vector is said to be in log space, whereas, for the second case, the distribution of the logs of the elements of the regional vector is said to be in quasi-log space.

In flood studies, it is the right tail of the probability distribution that matters. By an overall fit of a distribution, i.e. the fit over all the observations, the left tail wags the right tail, so to speak. The motivation for a right tail fit is to diminish, if not eliminate the impact of the left tail on the right tail through the overall fitting procedure. If the smaller floods are censored, than the distribution is a truncated distribution with appropriate adjustment in the exceedence probabilities of the uncensored floods. The methodology of right tail fitting of the Normal distribution outlined above does not require any censoring and thus no adjustment in the exceedence probabilities is needed.

How well the right tail fit of the Normal distribution compares with the overall fit of the Pearson Type III is examined. The comparison carries over to real space in terms of the right tail fit of the Log-Normal Distribution relative to the overall fit of the Log-Pearson Type III distribution. 

The comparison of the Right-Tail Normal with the overall Pearson Type III is made in terms of the distributions of the elements of the regional vectors in log space and in quasi-log space, and in terms of the distributions of the logs of the annual 1-day high flows at each of the 32 sites, where 21 sites are in the Upper Mississippi basin and the other 11 sites are in the Missouri basin. 

The sequences of annual 1-day high flows at each of the 32 sites in the two regions span the 70-year period, 1929-1998. This period is the longest concurrent period of the sequences. The comparison of the Right-Tail Normal distribution with the overall Pearson Type III distribution is in terms of the 50-year flood, i.e. the 50-year, annual 1-day high flow. The 50-year flow has an exceedence probability of 

. 

Rationale for Right-Tail Distribution

Previously it was noted that in the case of an overall fit of a distribution, the fit of the right tail is affected by the fit of the left tail, and conversely. In flood frequency analysis it is the left tail that matters, and therefore a good fit of the right at the expense of the goodness of fit of the left tail merits attention. 

Another reason for improving the fit of the right tail at the expense of the left tail is as follows. In a given locale, assume that the damages, 

, that would be incurred from a flood of magnitude 

 are defined as
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where 

 denotes the threshold flood, a value below which no damages are incurred, and 

 denotes the lower bound on flood magnitude. The expected value of damages is given by
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where 

 denotes the probability density function of floods which is not known. A specific density function is accepted 

 as the density function that best represents 

. Using 

, the estimate of the expected value of the damages is
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No matter what density function is used to represent 

, floods of magnitude less than the threshold value contribute nothing to the estimated expected value of damages.

In the above discussions, empirical evidence was offered that in log space, the Right-Tail Normal distribution provides better estimates of the 

 flood than does the Pearson Type III distribution for 

, i.e. for floods greater than the median flood. If in log space the Right-Tail Normal distribution out-performs the Pearson Type II distribution, then in real space, the Log-Normal distribution will out-perform the Log-Pearson Type III distribution. It is noted that the left tail of the Right-Tail Normal distribution does not provide as good a fit to the observations as does the left tail of  the Pearson Type III distribution. 

Let 

 be the Pearson Type III density function, and let 

 be the Right-Tail Normal density function. Assume that  

, i.e. the threshold flood exceeds the median flood. No matter how poorly the left tail of the Right-Tail Normal distribution fits the observations in comparison to the goodness of fit of the Pearson Type III distribution, the left tail of neither distribution has any effect on the estimated expected value of damages. The difference between estimates of the expected value of damages conditioned on 

 and 

 is small, thought the Right-Tail Normal distribution better fits the observed floods greater than the median flood than does the Pearson Type III distribution. 

Flow Sequences

Of the 32 sequences of annual 1-day high flows spanning the 70-year period, 1929-1998, 21 are in the Upper Mississippi basin and 11 are in the Missouri basin. The geographic locations of the sequences along with statistical descriptors of the sequences in log space, namely, the mean, 

, the standard deviation, 

, and the coefficient of skewness, 

, are given in Table 11. Because the matter of differences between sampling 

and population values of statistical descriptors is not dealt with, the sample statistics are denoted in terms of the Greek letters that are generally reserved for the corresponding population statistics.

Table 11:  Location and Statistical Description of Sequences of Annual 1-Day High Flows

Stream
Locale
State
Flow Descriptors
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Upper Mississippi Basin

St. Croix
St. Croix
WI
4.374
0.185
-0.638

Jump
Sheldon
WI
3.870
0.233
-0.062

Black
Neillsville
WI
4.018
0.251
-0.644

Maquaketa
Maquaketa
IA
4.045
0.277
-0.147

Mississippi
Clinton
IA
5.126
0.165
-0.608

Rock
Afton
WI
3.755
0.192
-0.598

Sugar
Broadhead
WI
3.428
0.285
-0.093

Pecatonica
Freeport
IL
3.706
0.241
0.144

Cedar
Cedar Rapids
IA
4.335
0.320
-0.640

Skunk
Augusta
IA
4.271
0.268
-1.013

Mississippi
Keokuk
IA
5.256
0.164
-0.717

De Moines
Stratford
IA
4.132
0.315
-0.741

Raccoon
Van Meter
IA
4.092
0.304
-0.391

Iroquois
Chebanse
IL
4.091
0.208
-0.548

Kankakee
Momence
IL
3.806
0.154
-0.583

Spoon
Seville
IL
4.067
0.226
-0.272

La Moines
Ripely
IL
3.955
0.288
-0.871

Meramec
Steeville
MO
4.030
0.354
-0.940

Bourbeuse
Union
MO
4.108
0.245
0.024

Big
Byrnesville
MO
4.154
0.288
-0.552

Meramec
Eureka
MO
4.550
0.279
-0.378

Average


4.151
0.250
-0.489

Std. Deviation


0.424
0.056
0.319

Missouri Basin

Yellowstone
Corwin Springs
MT
4.203
0.118
-0.307

Clarks Fork
Belfry
MT
3.844
0.104
-0.046

Yellowstone
Billings
MT
4.583
0.135
-0.409

Big Sioux
Akron
IA
3.949
0.434
-0.318

North Platte
Northgate
CO
3.391
0.220
-0.628

Bear
Morrison
CO
2.367
0.341
0.437

Elkhorn
Waterloo
NE
4.063
0.351
-0.022

Nishabottna
Hamburg
IA
4.096
0.324
-1.273

Grand
Gallatin
MO
4.337
0.261
-0.479

Thompson
Trenton
MO
4.247
0.291
-0.285

Gasconade
Jerome
MO
4.446
0.295
-0.477

Average


3.957
0.261
-0.346

Std. Deviation


0.617
0.106
0.423

All the coefficients of skewness are negative except three, two in the Upper Mississippi basin (Pecatonica at Freeport, IL and Bourbeuse at Union, MO), and one in the Missouri basin (Bear at Morrison, CO). The negative skews range from -1.013 to 0.024 with an average of -0.434 in the Upper Mississippi basin, and from -1.273 to 0.434 with an average of -0.489 in the Missouri Basin.

On a regional basis, the statistical descriptors of the distributions of the annual 1-Day high flows in log space and in quasi-log space are given in Table 12.

Table 12: Ststistical Descriptors of Regional Sequences of Annual 1-Day High Flows


Statistical Descriptors
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Upper Mississippi Basin

Log Space
1
0.060
-0.368

Quasi-Log Space
0
0.244
-0.234

Missouri Basin

Log Space
1
0.065
-0.408

Quasi-Log Space
0
0.262
-0.278

It is noted from Table 11, that the values of the coefficients of skewness in log space exceed the values in quasi-log space. The values of the standard deviation in log space are an order of magnitude smaller than the values in quasi-log space. In log space the mean is nearly equal to the median of unit value, whereas in quasi-log space, the mean is nearly equal to the median of zero value. It should be noted, that the regionalization process that was used follows the median-median procedure, where in log space, the median = 1 for the regional sequence, and in quasi-log space, the median = 0 for the regional sequence. 

Pearson Type III Distribution

The fitting procedure outlined in Bulletin 17- B for the Pearson Type III distribution is basically the method of moments. In lieu of the at-site estimate of the skewness, a regional estimate of skewness is used in fitting the distribution to the observed 

distribution where the ordered floods are assigned exceedence probabilities defined by the Weibull plotting position. For a sequence of 

 observations ordered from smallest to largest, the 

 observation, where 

, is assigned the Weibull plotting position, 

. The associated exceedence probability is given by 
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In the following discussions, the fitting of the Pearson Type III distribution is based on the at-site estimates or on the regionalized estimates of skewness. No account is taken of regionalizing the at-site estimates of skewness or of regionalizing the regional estimates of skewness in terms of Bulletin 17-B. The regionalized estimates of skewness are, in effect, regional estimates of skewness. 

The Pearson Type III distribution is defined as
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If 

 is positive, then 

 is positively skewed, where 

. If 

 is negative, then 

 is negatively skewed, where 

. 

The 

 moment about the origin of 

 is 
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It follows that
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whereby,
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Let 

 denote an arbitrary sequence. The values of 

, 

 and 

, actually the estimates of the values 

, 

 and 

, are given by


 EMBED "Equation" \* mergeformat  


(50)

Annual 1-Day High Flows

The values of 

, 

 and 

 are given in Table 13 for the at-site sequences of annual 1-day high flows in log-space.

Table 13: Pearson Type III Parameter for At-Site Sequences of Annual 1-Day High Flows in Log Space
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Upper Mississippi Basin

St. Croix
4.958
9.989
-0.058

Jump
11.131
1055.841
-0.007

Black
4.799
9.657
-0.081

Maquaketa
7.802
183.970
-0.020

Mississippi
5.667
10.806
-0.050

Rock
4.398
11.204
-0.057

Sugar
9.577
463.502
-0.013

Pecatonica
7.040
191.858
0.017

Cedar
5.334
9.751
-0.102

Skunk
4.800
3.897
-0.136

Mississippi
5.713
7.773
-0.059

De Moines
4.983
7.293
-0.117

Raccoon
5.645
26.086
-0.060

Iroquois
4.849
13.331
-0.057

Kankakee
4.336
11.754
-0.045

Spoon
5.727
53.874
-0.031

La Moines
4.615
5.277
-0.125

Meramec
4.783
4.532
-0.166

Bourbeuse
24.639
7,028.689
0.003

Big
5.198
13.149
-0.079

Meramec
6.029
28.042
-0.053


Missouri Basin

Yellowstone
4.974
42.981
-0.018

Clarks Fork
8.324
1,868.663
-0.002

Yellowstone
5.241
23.933
-0.027

Big Sioux
6.674
39.524
-0.069

North Platte
4.092
10.138
-0.069

Bear
3.991
20.981
0.075

Elkhorn
36.204
8,367.870
-0.004

Nishabottna
4.605
2.468
-0.206

Grand
5.427
17.404
-0.063

Thompson
6.287
49.173
-0.041

Gasconade
5.681
17.553
-0.070

On the basis of regionalized annual 1-day high flows, the parameter values are given in Table 14.

Table 14: Pearson Type III Parameter for Regional Sequences of Annual 1-Day High Flows in Log Space
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Upper Mississippi Basin

Log Space
1.323
29.530
-0.011

Quasi-Log Space
2.071
72.959
-0.029

Missouri Basin

Log Space
1.313
23.972
-0.013

Quasi-Log Space
1.856
51.656
-0.036

Pearson Type III 

 Normal Distribution

As 

 the Pearson Type III distribution tends to the Normal distribution, 

, 
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where 

. For an arbitrary sequence, 

, the values of the parameters, 

 and 

 , of the Normal distribution are given by
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For 

 and 

, the Pearson Type III distribution becomes the standard Gamma distribution
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If 

 are independent random variables, each distributed as 

, then 



 is distributed as chi square with 

 degrees of freedom. The random variable 

 is distributed as standard Gamma with 
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where 

 and 

 is an integer.

The standard Gamma distribution tends to the unit normal distribution as 

, i.e. as skewness 

:
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The Pearson Type III distribution tends to the unit normal distribution as 

:
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The chi square distribution tends to the unit normal distribution as 

:
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Refer to Johnson and Kotz (1970).

For 

 large, Fisher (1922) proposed approximating the Normal distribution by the following transformation of  
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More rapid convergence is given by the transformation of Wilson and Hilferty (1931)
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See Wadsworth and Bryan (1960).

Fitting Right-Tail Normal Distributions

For a Right-Tail Normal distribution, the values of 

 and 

 are partitioned by the values of 

 greater than the median. Assume that the elements of 

 are in rank order from smallest to largest. To each element of 

, a probability, 

, is assigned, where for the Weibull plotting position,
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It is assumed that the right and left tails of the Normal distribution are marked by the median, which for a Normal distribution is the mean, 

: the left tail extend from 
 EMBED "Equation" \* mergeformat  

 to the median, and the right tail extends from the median to 
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. Thus the right tail of the Normal distribution is given by 

 for 

, where
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A Right-Tail Normal distribution is defined by values of 

 and 

  that are themselves defined by the partial sequence 


The parameter 

 of a Right-Tail Normal distribution may be defined as 
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where
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By definition, for 

,
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The parameter 

 may be defined in several ways. Herein, three different method of determining 

 are considered, 1) the inflection point method, 2) the 

 method, and 3) the mirrored spread method. 

Inflection Point Method

Let 

 denote the value for which
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A general property of the Normal distribution is 

that
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where 

 marks the right inflexion point of the Normal density function. The left inflection point is given by 

. However, since 

 and 

 are defined by the observations greater than the median, the left inflection point may not match the left inflection point of a Left-Tail Normal distribution. In any case, the left tail of the observed distribution does not enter into determining the fit of a Right-Tail Normal distribution.

In general, 

 is determined by interpolation. Let 

 and 

 denote the elements of 

 for which 

 and 

, where by linear interpolation
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whereby
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 Method

Let 

 denote an ordered sub-set of elements belonging to 

 where 

 

  and 
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Let 

 denote the unit Normal distribution: 

. For 
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Therefore
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whereby
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where
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For a given value of 

, there are 

 

 values of 

, where
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For 

, there are 

 possible values of 

, if 

 is odd or 

 if 

 is even. The inflection point method is a special case of the 

 method where 

 and 

, where 

 is defined by Eq. (68). For 

 equal to 

 if 

 is odd or 

 if 

 is even, 

.

Mirrored Spread Method

The mirrored spread method takes 

 to be twice the mean sum of squares about the mean of the values greater than the mean. The method yields
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where 

 and 

 are defined by Eqs. (61) and (75).

Parameter Values

For the various sequences, the values of the parameters, 

  and 

, of the Right-Tail Normal distribution were determined. Each of the three methods for determining 

 were used In the case of the 

  method, 

 –  the flow sequences are of length 

.

The at-site values of 

 and 

 for sequences of annual 1-day high flows in log space are given in Table 15.

Table 15:  Right-Tail Normal Parameters  for Sequences of Annual 1-Day High Flows in Log Space
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Inflection Point
35-Point
Mirrored Spread


Upper Mississippi Basin

St. Croix
4.400
0.151
0.157
0.144

Jump
3.886
0.192
0.204
0.205

Black
4.051
0.179
0.202
0.198

Maquaketa
4.051
0.295
0.298
0.263

Mississippi
5.149
0.151
0.134
0.131

Rock
3.761
0.205
0.184
0.173

Sugar
3.423
0.276
0.308
0.282

Pecatonica
3.703
0.290
0.263
0.247

Cedar
4.386
0.281
0.261
0.242

Skunk
4.274
0.190
0.256
0.232

Mississippi
5.279
0.126
0.133
0.127

De Moines
4.179
0.274
0.244
0.239

Raccoon
4.090
0.330
0.312
0.287

Iroquois
4.109
0.215
0.195
0.175

Kankakee
3.815
0.159
0.142
0.135

Spoon
4.088
0.213
0.214
0.196

La Moines
3.984
0.241
0.248
0.230

Meramec
4.086
0.243
0.258
0.258

Bourbeuse
4.107
0.245
0.254
0.242

Big
4.167
0.238
0.275
0.252

Meramec
4.570
0.275
0.248
0.245

Average
4.169
0.227
0.228
0.214

Std. Deviation
0.430
0.056
0.055
0.050


Missouri Basin

Yellowstone
4.212
0.096
0.106
0.105

Clarks Fork
3.841
0.116
0.113
0.105

Yellowstone
4.584
0.128
0.135
0.126

Big Sioux
4.009
0.337
0.360
0.360

North Platte
3.421
0.175
0.188
0.170

Bear
2.315
0.418
0.438
0.405

Elkhorn
4.104
0.315
0.318
0.310

Nishabottna
4.149
0.218
0.229
0.227

Grand
4.394
0.180
0.194
0.193

Thompson
4.273
0.245
0.275
0.251

Gasconade
4.442
0.289
0.297
0.276

Average
3.977
0.229
0.241
0.230

Std. Deviation
0.635
0.102
0.106
0.102

The three methods yield comparable Right-Tail Normal values of 

. The average values of 

 are nearly the same for each of the methods. The average values are somewhat larger for the Missouri basin than for the Upper Mississippi basin. The standard deviations of the values of 

 within the Upper Mississippi basin are about half those within the Missouri basin.

The average values of the Right-Tail Normal values of 

 are somewhat smaller than the average values overall values of 

. Refer to Tables 1 and 10. The variability of the Right-Tail Normal values

 over the sequences in either basin is nearly equal to the variability among the at-site values of  

. Refer to Tables 11 and 15.

On a regional basis, the values of 

  and 

 are given in Table 16.

Table 16:  Right-Tail Normal Parameters for Regional Sequences of Annual 1-Day High Flows 
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Inflection Point
35-Point
Mirrored Spread


Upper Mississippi Basin

Log Space
1
0.057
0.056
0.053

Quasi-Log Space
0
0.236
0.234
0.223


Missouri Basin

Log Space
1
0.053
0.057
0.054

Quasi-Log Space
0
0.218
0.234
0.227

From Table 16, it is noted that the values of 

  and 

  in a given space log space for one basin are almost equal to the values for that space for the other basin. In either log space or quasi-log, the three methods yield almost equal values of 

.

Goodness of Fit

The comparison of the Pearson Type III distribution with the Right-Tail Normal distribution is in terms of magnitudes of the estimates of the 50-year event for the 70-year sequences and of both the 50-year and the 100-year event for the 100-year sequences.

Let 

 denote a sequence of flows ordered from smallest, 

, to largest, 

. Each flow is assigned a probability, defined as the Weibull plotting position. Refer to Eq. (16). The 

 flow, 

, where 

 equals 50 or 100, is given by linear interpolation. Let 

 and 

 denote the elements of 

, for which 

 and 

. By linear interpolation
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where 
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Let 

 denote the value of the 

 flow obtained from a fitted Pearson Type III distribution:
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where 

 is defined by Eq. (79), 

, by Eq. (46) and 

, by Eq.(49)

Let 

 denote the value of the 

 flow obtained from a fitted Right-Tail Normal distribution:
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where 

 is defined by Eq. (79), and 

, by Eq. (51).

Let 
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denote the difference between the estimates of the 

 flow obtained from the observations and the fitted Pearson Type III distribution. Let
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If 

, then the Pearson Type III distribution provides a better estimate of the 

 flow than the Right-Tail Normal distribution. If, however, 

, then the Right-Tail Normal distribution provides a better estimate of the 

 flow.

The comparison of the goodness of fit of the Pearson Type III distribution and the Right-Tail Normal distribution among the at-site sequences of annual 1-day high flows in log space is given in Table 17.

Table 17: Goodness of Fit per 

 Flow Relative to At-Site Sequences  of 1-Day high Flows in Log Space

River
Skewness
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Inflection Point
35-Point
Mirrored Spread


Upper Mississippi Basin

St. Croix
-0.633
0.008
-0.013
-0.026
0.000*

Jump
-0.062
0.131*
0.181
0.155
0.154

Black
-0.644
0.100
0.125
0.077*
0.084

Maquaketa
-0.147
-0.074
-0.141
-0.147
-0.074*

Mississippi
-0.608
0.030
-0.021
0.014*
0.020

Rock
-0.598
0.013*
-0.085
-0.043
-0.020

Sugar
-0.093
-0.034
-0.011*
-0.077
-0.023

Pecatonica
0.144
0.026
-0.092
-0.035
-0.003*

Cedar
-0.640
-0.029*
-0.117
-0.076
-0.036

Skunk
-1.013
0.086
0.088
-0.049
0.001*

Mississippi
-0.717
0.066
0.055
0.039*
0.053

Des Moines
-0.741
0.078
-0.019*
0.046
0.054

Raccoon
-0.392
0.021
-0.099
-0.060
-0.009*

Iroquois
-0.548
-0.034*
-0.132
-0.091
-0.050

Kankakee
-0.583
0.046
-0.023
0.011*
0.026

Spoon
-0.272
0.007*
-0.021
-0.024
0.013

La Moines
-0.871
0.009*
-0.068
-0.083
-0.045

Meramec
-0.940
0.077
0.058
0.028
0.028*

Bourbeuse
0.024
0.095
0.095
0.078*
0.102

Big
-0.552
0.063
0.062
-0.013*
0.035

Meramec
-0.378
0.043
-0.028
0.027*
0.034

Average
-0.489
0.035
-0.010
-0.012
-0.016

Std. Deviation
0.319
0.052
0.089
0.070
0.054


Missouri Basin

Yellowstone
-0.307
0.044
0.066
0.040*
0.041

Clark’s Fork
-0.046
0.012
-0.010
-0.004*
0.012

Yellowstone
-0.409
0.042
0.023
0.008*
0.027

Big Sioux
-0.318
0.042*
0.104
0.057
0.056

North Platte
-0.628
0.024
0.008*
-0.019
0.018

Bear
0.437
0.126
-0.065
-0.107
-0.038*

Elkhorn
-0.022
0.044*
0.079
0.081
0.089

Nishabottna
-1.273
0.185
0.114
0.092*
0.096

Grand
-0.479
0.080*
0.121
0.090
0.093

Thompson
-0.285
0.036
0.059
-0.005*
0.045

Gasconade
-0.477
0.073
0.010
-0.007*
0.035

Average
-0.346
0.064
0.046
0.021
0.043

Std. Deviation
0.423
0.051
0.058
0.059
0.040

* Best Fit






From Table 17, it is noted that on average the Right-Tail Normal distribution provides a better estimate of the 

 flow than the Pearson Type III distribution in both the Upper Mississippi basin and the Missouri basin. For 15 of the 21 sequences in the Upper Mississippi basin, the Right-Tail Normal distribution out performs the Pearson Type III distribution. Of those 15 sequences, method 2 – the 

 method – is somewhat better than method 3 – the mirrored spread method –  by a factor of 8-to-6. However, for 14 of the 15 sequences, the Right-Tail Normal distribution conditioned on method 3 is better than the Pearson Type III distribution, whereas, for 10 of the 15 sequences, the Right-Tail Normal distribution conditioned on method 2 is better than the Pearson Type III distribution.

For 8 of the 11 sequences in the Missouri basin, the Right-Tail Normal distribution out performs the Pearson Type III distribution. Of those 8 sequences, method 2 performs best, although in each case the Right-Tail Normal distribution conditioned on method 3 better fits the flows than the Pearson Type III distribution.

For the 32 sequences in the two basins, 23 are better fitted with the Right-Tail Normal distribution than with the Pearson Type III distribution.

The probability distributions fitted with the Pearson Type III distribution and with the Right-Tail Normal distribution are shown for each of the 32 sequences in Appendix I.

The comparison of the goodness of fit of the Pearson Type III distribution and the Right-Tail Normal distribution among the regional sequences of annual 1-day high flows in log space is given in Table 18.

Table 18: Goodness of Fit per  

 Relative to Regional Sequences  of 1-Day high Flows in Log Space

River
Skewness
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Inflection Point
35-Point
Mirrored Spread


Upper Mississippi Basin

Log Space
-0.368
0.007
-0.003
0.002*
0.005

Quasi-Log Space
-0.234
0.029
0.000*
0.004
0.027


Missouri Basin

Log Space
-0.408
0.019
0.024
0.013*
0.019

Quasi-Log Space
-0.278
0.081
0.106
0.072*
0.087

* Best Fit






For both the Upper Mississippi and the Lower Missouri basin, the regional sequences are best fitted with a Right-Tail Normal distribution. Although, the Right-Tail Normal distribution conditioned on the inflection point method is best in quasi-log space in the Upper Mississippi basin, Right-Tail Normal distribution conditioned on the 35-point method is better is better than the Pearson Type III distribution in all cases.

The probability distribution fitted with the Pearson Type III distribution and with the Right-Tail Normal distribution are shown for each of the 4 regional sequences in Appendix J.

Real Space

The distributions of the at-site sequences in log space fitted with a Pearson Type III distribution and with a Right-Tail Normal distribution are transformed into real space through exponentiation. The Pearson Type III distribution in log space exponentiates to the Log-Pearson Type III distribution in real space, and the Right-Tail Normal distribution in log space exponentiates to the Right-Tail Log-Normal distribution in real space. The transform is monotonic, and therefore it does not affect the relative magnitudes of estimates of the 

 flow. Whichever distribution fits best in log space, its real space transform fits best in real space.

The distributions of the regional sequences in log space fitted with a Pearson Type III distribution and with a Right-Tail Normal distribution are transformed into real space 

as follows. Let 

 denote one of the three estimates of the 

 flow, namely, 

, 

 or 

. Let 

 denote the median of the logs of the flows at the 

 site in the region. The real space estimate of the 

 flow at the 

, site 

, is given by
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Multiplying each of the log space estimates of the 

 flow by a constant, namely, 

, does not effect the relative magnitudes of the estimates. Because exponentiation does not effect the relative magnitudes of the products of the log space estimates of the 

 flows by a constant, whichever distribution fits best in log space, its real space transform fits best in real space. 

The distributions of the regional sequences in quasi-log space fitted with a Pearson Type III distribution and with a Right-Tail Normal distribution are transformed into real space as follows. Let 

 denote one of the three estimates of the 

 flow, namely, 

, 

 or 

. Let 

 denote the median of the real space flows at the 

 site. The real space estimate of the 

 flow at the 

 site, 

, is given by
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It follows that whichever distribution fits best in log space, its real space transform fits best in real space.

If the estimates of the 

 flows at specific sites in a region are obtained through at-site analysis, then for a good majority of the sites the better estimates are those based on the Right-Tail Normal distribution in log space or the Right-Tail Log-Normal distribution in real space. On the other hand, if the estimates of the 

 flows at the specific sites are obtained through regional analysis, then for all sites he better estimates are those based on the Right-Tail Normal distribution in log space or the Right-Tail Log-Normal distribution in real space.

With the Right-Tail Normal distribution in log space, the matter of whether one or more of the “low” flows should be censored need not be addressed. By using the Right-Tail Normal distribution, there is no need to determine the skewness at site or through regionalization.

Comparison of Pearson Type III and Right-Tail Normal Distributions – Annual Peak Flows

A comparison between the Pearson Type III distribution and the Right-Tail Normal distribution is made with respect to estimates of the 

, for 

.  The estimates the 

 floods are obtained from sequences of annual peaks, 7 along the Upper Mississippi river and 7 along the Missouri river. The Mississippi river sequences span the 100 year period 1896-1995, and the Missouri river sequences span the 100 year period 1898-1997. See Table 19. 

Table 19:  Location and Statistical Description of Sequences of Annual Peak Flows

Locale
State
Flow Descriptors
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Upper Mississippi Basin

St. Paul
MN
4.576
0.258
-0.295

Winona
MN
4.931
0.212
-0.803

Dubuque
IA
5.092
0.163
-0.623

Clinton
IA
5.112
0.154
-0.432

Keokuk
IA
5.241
0.158
-0.584

Hannibal
MO
5.296
0.188
-1.350

St. Louis
MO
5.691
0.169
-0.477

Average

5.134
0.186
-0.650

Std. Deviation

0.342
0.038
0.347

Missouri Basin

Sioux City
IA
5.158
0.196
-0.522

Omaha
NE
5.157
0.186
-0.471

Nebraska City
NE
5.216
0.187
-0.494

St. Joseph
MO
5.222
0.159
-0.185

Kansas City
MO
5.322
0.184
-0.017

Booneville
MO
5.409
0.186
-0.097

Hermann
MO
5.492
0.196
0.025

Average

5.282
0.185
-0.252

Std. Deviation

0.128
0.012
0.226

For further description of these sequences refer to Planning & Management Consultants, Ltd. (1999.)

The comparison between the Pearson Type III distribution and the Right-Tail Normal distribution is in reference to the relative goodness of fit of the distributions with respect to estimates of the 

 flood, where 

. The comparison is made in reference to both at-site sequences and regionalized sequences. The assessment of the relative goodness of fit of the distributions is limited to estimates of the 

 flood, for 

. To consider values of 

, the definition of the right tail would need to be revised.

In contrast to the comparison in terms of the annual 1-day high flows discussed above, the comparison in terms of the annual peak flows takes into account the statistical significance in the differences in the estimates of the 

 floods derived from the Pearson Type III distribution and the Right-Tail Normal distribution.

Goodness of Fit

The Pearson Type III and the Right-Tail Normal distributions were fitted to ordered sequences of flows using the Weibull plotting position. To fit the Pearson Type III distribution, the parameters of the distribution were determined by the method of moments. See Table 20.

Table 20: Pearson Type III Parameter for At-Site Sequences of Annual Peak Flows in Log Space
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Upper Mississippi Basin

St. Paul
6.325
45.942
-0.295

Winona
5.458
6.202
-0.085

Dubuque
5.616
10.287
-0.051

Clinton
5.824
21.451
-0.033

Keokuk
5.781
11.717
-0.046

Hannibal
5.574
2.195
-0.127

St. Louis
6.4
17.567
-0.040


Missouri Basin

Sioux City
5.908
14.654
-0.051

Omaha
5.949
18.067
-0.044

Nebraska City
5.972
16.369
-0.046

St. Joseph
6.944
117.139
-0.015

Kansas City
26.258
12,994.935
-0.002

Booneville
9.261
426.874
-0.009

Hermann
21.354
6,573.286
0.002

The Right Tail Normal distribution was fitted to an observed distribution using each of the three methods for estimating the parameters of the Right-Tail Normal distribution –  inflection point, 

point and mirrored spread– where 

. See Table 21.

Table 21:  Right-Tail Normal Parameters for At-Site Sequences of Annual Peak Flows in Log Space 
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Inflection Point
50-Point
Mirrored Spread


Upper Mississippi Basin

St. Paul
4.600
0.117
0.224
0.244

Winona
4.956
0.178
0.173
0.173

Dubuque
5.119
0.132
0.125
0.128

Clinton
5.125
0.120
0.137
0.133

Keokuk
5.252
0.141
0.140
0.136

Hannibal
5.324
0.153
0.140
0.140

St. Louis
5.694
0.181
0.170
0.156

Average
5.153
0.146
0.158
0.159

Std. Deviation
0.366
0.026
0.034
0.041


Missouri Basin

Sioux City
5.154
0.168
0.196
0.179

Omaha
5.161
0.165
0.176
0.165

Nebraska City
5.248
0.132
0.147
0.144

St. Joseph
5.239
0.122
0.136
0.139

Kansas City
5.329
0.153
0.166
0.175

Booneville
5.401
0.192
0.197
0.189

Hermann
5.484
0.211
0.214
0.201

Average
5.288
0.163
0.176
0.170

Std. Deviation
0.123
0.031
0.028
0.023

On a regional basis, in log space and quasi-log space, the parameters of the Fitted Pearson Type III and Right-Tail Normal distributions are given in Tables 22 and 23.

Table 22: Pearson Type III Parameter for Regional Sequences of Annual Peak Flows 
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Upper Mississippi Basin

Log Space
1.104
10.820
-0.039

Quasi-Log Space
0.590
12.633
-0.048

Missouri Basin

Log Space
1.265
62.403
-0.004

Quasi-Log Space
1.295
53.874
-0.024

Table 23:  Right-Tail  Normal Parameters for Regional Sequences of Annual Peak Flows  
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Inflection Point
50-Point
Mirrored Spread


Upper Mississippi Basin

Log Space
1
0.029
0.028
0.027

Quasi-Log Space
0
0.153
0.149
0.144


Missouri Basin

Log Space
1
0.029
0.031
0.030

Quasi-Log Space
0
0.149
0.161
0.159

Let 

 denote the estimate of the 

 flood given by the observed distribution. Let 

 denoted the estimate of the 

 flood given by the Pearson Type III distribution fitted to the observed distribution. Let 

 denote the estimate of the 

 flood given by the Right-Tail Normal distribution fitted to the observed distribution using method 

 for estimating the parameter of the Right Tail Normal distribution, where 

 refers to the inflection point method, the 

-point method and the mirrored spread method.

Let
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denote the difference between the estimates of the 

 flood given by the observed and the fitted Pearson Type III distributions. 

Let
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denote the difference between the estimates of the 

 flood given by the observed and the fitted Right-Tail Normal Distribution using parameter estimation method 

.

If 

 then the Pearson Type III distribution provides a better estimate of the 

 flood, and thereby a better fit to the observed distribution, than the Right-Tail Normal distribution using parameter estimation method 

. If 

 then the Right-Tail Normal distribution using parameter estimation method 

  provides a better estimate of the 

 flood, and thereby a better fit to the observed distribution, than the Pearson Type III distribution. If 

, then there is no difference in the goodness of fits of the Pearson Type III distribution and the Right-Tail Normal distribution using parameter estimation method 

.

Statistical Assessment of Goodness of Fit

At-Site Analysis

The statistical significance of the difference between 

 and 

 is assessed as follows. Let 

 and 

 denote the differences between the observed estimates of the 

 flood given by the observed and the fitted Pearson Type III distribution and the Right-Tail Normal Distribution using parameter estimation method 

, respectively at the 

, where 

. For either the Upper Mississippi basin or the Missouri basin, 

. 

Let 
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denote the mean and standard deviation of the values 

. The mean and standard deviation of the values 

 are 
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Let 

 and 

, and 

 and 

 denote the “population” means and standard deviations, i.e., the values of the means and standard deviations of the 

 and 

 that would attain with 

.

If the null hypothesis
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is not rejected at probability level 

, then if the null hypothesis
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is not rejected at probability level 

, then there is no statistical difference in the goodness of fits of the Pearson Type III distribution and the Right-Tail Normal distribution to the observed distribution. In general, 

.

The null hypothesis 

 is assess by means of the 

-distribution. See e.g. Johnson and Kotz (1970). Let
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Let
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The probability that 

 will fall in the interval 

 is
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where 

 denotes the beta function with arguments 

 and 

. See e.g. Abramowitz and Stegun (1964).

Thus
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If 

, then the null hypothesis 

 is rejected.

Herein, 

, where 

 for both the Upper Mississippi basin and the Lower Missouri basin, and 

 in the case where the basins are pooled.

Assume that the null hypothesis 

 is not rejected, i.e., 

, in which case the null hypothesis 

 may be assessed by means of the 

-distribution. Let
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where 

 is distributed as
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where 

 denotes the beta function with arguments 

 and 

. Refer to Abramowitz and Stegun (1964). If 
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then the null hypothesis 

 is rejected.

Regional Analysis-Log Space

To statistically assess the goodness of fits of the Pearson Type III distribution and the Right-Tail Normal distribution to a regionalized distribution, the regional values of 

 and 

 are transposed into at-site values as follows. Let 

 denote the median of the logs of the flows at site 

. The at-site fit of the Pearson Type III distribution and the Right-Tail Normal distribution at the 

 site derived via regionalization in log space are given as
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It is noted that if the regional distribution is best fitted by the Pearson Type III (Right-Tail Normal distribution), then at-site distribution derived through regionalization is best fitted by the Pearson Type III (Right-Tail Normal distribution). The at-site goodness of fit at the 

 site is measured by the regional goodness of fit times a constant, namely, the median of the logs of the flows at the 

 site.

The means and the standard deviations of the 

 and the 

 are given by Eqs. (80) through (83) with 

 and 

 replaced by 

 and 

, respectively. Note, 
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Regional Analysis-Quasi-Log Space

Let
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Let 

 denote the median of the flows at the 

 site. The at-site fit of the Pearson Type III distribution and the Right-Tail Normal distribution at the 

 site derived via regionalization in quasi-log space are given as
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whereby
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It follows that if the regional distribution is best fitted by the Pearson Type III (Right-Tail Normal distribution), then at-site distribution derived through regionalization is best fitted by the Pearson Type III (Right-Tail Normal distribution). The at-site goodness of fit at the 

 site is measured by the anti-log of the regional goodness of fit times a constant, namely, the median of the flows at the 

 site. 

At-Site Goodness of Fit

The at-site values of 

 and 

 conditioned on 

  are given in Tables 24a and 24b.

Table 24a: Goodness of Fit per 

 Flow Relative to At-Site Sequences  of Annual Peak Flows in Log Space 

River
Skewness
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Inflection Point
50-Point
Mirrored Spread


Upper Mississippi Basin

St. Paul
-0.295
0.127*
0.228
0.131
0.132

Winona
-0.803
0.067
0.016*
0.025
0.025

Dubuque
-0.623
0.012
-0.007
-0.007
-0.000*

Clinton
-0.432
-0.015
0.004*
-0.031
-0.022

Keokuk
-0.584
0.044
0.016*
0.019
0.027

Hannibal
-1.350
0.098
-0.001*
0.027
0.025

St. Louis
-0.477
-0.028*
-0.100
-0.078
-0.048

Average
-0.650
0.044
0.022
0.012
0.020

Std. Deviation
0.347
0.058
0.099
0.064
0.057


Missouri Basin

Sioux City
-0.522
-0.015
0.009*
-0.037
-0.019

Omaha
-0.471
0.031*
0.044
0.033
0.037

Nebraska City
-0.494
0.037
0.066
0.037*
0.043

St. Joseph
-0.185
0.071*
0.114
0.086
0.080

Kansas City
-0.017
0.059*
0.115
0.088
0.070

Booneville
-0.097
-0.051
-0.054
-0.065
-0.048*

Hermann
0.025
0.036
0.011
0.006*
0.032

Average
-0.252
0.024
0.044
0.021
0.028

Std. Deviation
0.238
0.043
0.061
0.058
0.046


Pooled Basins

Average
-0.452
0.034
0.033
0.017
0.024

Std. Deviation
0.353
0.050
0.080
0.059
0.050

* Minimum Absolute Difference in Fit





Table 24b: Goodness of Fit per 

 Flow Relative to At-Site Sequences  of Annual Peak Flows in Log Space 

River
Skewness
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Inflection Point
50-Point
Mirrored Spread


Upper Mississippi Basin

St. Paul
-0.295
0.113
0.221
0.112*
0.113

Winona
-0.803
0.130
0.058*
0.068
0.068

Dubuque
-0.623
0.077
0.048*
0.064
0.056

Clinton
-0.432
0.066
0.081
0.041*
0.051

Keokuk
-0.584
0.104
0.064
0.066
0.076

Hannibal
-1.350
0.151
0.020*
0.051
0.049

St. Louis
-0.477
0.083
-0.008*
0.017
0.051

Average
-0.650
0.103
0.069
0.082
0.066

Std. Deviation
0.347
0.030
0.073
0.045
0.023


Missouri Basin

Sioux City
-0.522
0.177
0.195
0.142*
0.162

Omaha
-0.471
0.163
0.171
0.156*
0.162

Nebraska City
-0.494
0.114
0.141
0.107*
0.114

St. Joseph
-0.185
0.118*
0.165
0.133
0.126

Kansas City
-0.017
0.103*
0.166
0.136
0.116

Booneville
-0.097
0.117
0.112
0.099*
0.119

Hermann
0.025
0.039
0.010
0.005*
0.034

Average
-0.252
0.119
0.137
0.111
0.119

Std. Deviation
0.238
0.045
0.062
0.051
0.043


Pooled Basins

Average
-0.452
0.111
0.137
0.111
0.119

Std. Deviation
0.353
0.038
0.074
0.048
0.043

* Minimum Absolute Difference in Fit





In the case of the 

 flood, the Right-Tail Normal distribution provides a better fit to the observed distribution than the Pearson Type III distribution at a majority of the sites – 5 of the 7 in the Upper Mississippi basin and 4 of the 7 in the Missouri basin. In the case of the 

 flood, the Right-Tail Normal Distribution is more dominate than the Pearson Type III distribution. At all 7 site in the Upper Mississippi basin and at 5 of the 7 sites in the Missouri basin, the Right-Tail Normal distribution provides a better fit to the observed distribution than the Pearson Type III distribution.

The fits of the Pearson Type III distributions and the Right-Tail Normal distributions to the observed at-site distributions are shown in Appendix K. The Right-Tail Normal distributions are fitted using the mirrored spread method to estimate the distribution’s parameters.

Assessment of Variances of Differences in Fits

The 

 values and their corresponding probabilities relating to the variances of the at-site differences in the fits of the Pearson Type III distribution and the Right-Tail Normal Distribution to the observed distribution are given in Table 25a and 25b.

Table 25a: F Values Based on At-Site Fits of the Pearson Type III and the Right-Tail Normal Distributions to Observed Distributions

Method
50-Year Peak Flow
100-Year Peak Flow


Upper Mississippi Basin

Inflection
2.951
5.767

50-Point
1.244
0.916

Mirrored Spread
0.970
0.565


Missouri Basin

Inflection
2.042
1.911

50-Point
1.837
1.295

Mirrored Spread
1.168
0.918


Pooled Basins

Inflection
2.570
3.877

50-Point
1.402
1.622

Mirrored Spread
1.004
1.299

Table 25b: Probability of F Values  Based on At-Site Fits of the Pearson Type III and the Right-Tail Normal Distributions to Observed Distributions

Method
50-Year Peak Flow
100-Year Peak Flow


Upper Mississippi Basin

Inflection
0.107
0.026

50-Point
0.399
0.541

Mirrored Spread
0.514
0.747


Missouri Basin

Inflection
0.203
0.255

50-Point
0.239
0.382

Mirrored Spread
0.428
0.540


Pooled Basins

Inflection
0.050
0.010

50-Point
0.276
0.197

Mirrored Spread
0.497
0.322

In neither the Upper Mississippi basin or the Lower Missouri basin is the null hypothesis, 

, rejected at probability level 

 in estimating the 

 flood with the Right-Tail Normal distribution. In the Upper Mississippi basin the null hypothesis, 

, is rejected at probability level 

 in the case where the mirrored spread method is used to estimate the 

 flood with the Right-Tail Normal distribution. In the case where the basins are pooled, the null hypothesis, 

, is rejected at probability level 

 in estimating the 

 flood and at probability level 

 in estimating the 

 flood by the inflection point method with the Right-Tail Normal distribution. For neither the estimate of the 

 flood nor the 

 flood is the null hypothesis, 

, rejected at probability level 

 in using either the 50-point method or the mirrored spread method with the Right-Tail Normal distribution.

Assessment of Means of Differences in Fits

The 

 values and their corresponding probabilities relating to the variances of the at-site differences in the fits of the Pearson Type III distribution and the Right-Tail Normal Distribution to the observed distribution are given in Table 26a and 26b.

Table 26a:  t Values Based on At-Site Fits of the Pearson Type III and the Right-Tail Normal Distributions to Observed Distributions

Method
50-Year Peak Flow
100-Year Peak Flow


Upper Mississippi Basin

Inflection
0.490
1.144

50-Point
0.956
2.731

Mirrored Spread
0.774
2.576


Missouri Basin

Inflection
0.695
0.639

50-Point
0.105
0.296

Mirrored Spread
0.162
0.012


Pooled Basins

Inflection
0.380
0.344

50-Point
0.797
1.514

Mirrored Spread
0.507
1.165

Table 26b: Probability of t Values  Based on At-Site Fits of the Pearson Type III and the Right Tail Normal Distributions to Observed Distributions

Method
50-Year Peak Flow
100-Year Peak Flow


Upper Mississippi Basin

Inflection
0.633
0.275

50-Point
0.358
0.018

Mirrored Spread
0.454
0.024


Missouri Basin

Inflection
0.500
0.535

50-Point
0.918
0.722

Mirrored Spread
0.874
0.990


Pooled Basins

Inflection
0.707
0.733

50-Point
0.433
0.142

Mirrored Spread
0.616
0.254

In no case is the null hypothesis, 

, rejected at probability level 

. Though on average, the differences in the estimates of the 

-year floods yielded by the Pearson Type III and the Right-Tail Normal distribution are not statistically significant at probability level 

, the minimum differences in the fits to the observed distributions is dominated by the Right-Tail Normal distribution.

Regional Goodness of Fit

The regional values of 

 and 

 conditioned on 

 are given in Tables 27a and 27b.

Table 27a: Goodness of Fit per 

 Flow Relative to Regional Sequences  of Annual  Peak Flows in Log Space 

River
Skewness

 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  






Inflection Point
50-Point
Mirrored Spread


Upper Mississippi Basin

Log Space
-0.608
0.005
-0.001
0.000*
0.002

Quasi-Log Space
-0.563
0.025
-0.009
-0.000*
0.009


Missouri Basin

Log Space
-0.253
0.003
0.007
0.002*
0.003

Quasi-Log Space
-0.272
0.014
0.036
0.010*
0.015

* Minimum Absolute Difference in Fit





Table 27b: Goodness of Fit per 

  FlowRelative to Regional Sequences  of Annual  Peak Flows in Log Space 

River
Skewness

 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  






Inflection Point
50-Point
Mirrored Spread


Upper Mississippi Basin

Log Space
-0.608
0.015
0.007*
-0.010
0.009

Quasi-Log Space
-0.563
0.082
0.045*
-0.047
0.055


Missouri Basin

Log Space
-0.253
0.028
0.031
0.026*
0.027

Quasi-Log Space
-0.272
0.140
0.160
0.131*
0.137

* Minimum Absolute Difference in Fit





The fits of the Pearson Type III distributions and the Right-Tail Normal distributions to the regional distributions are shown in Appendix L. The Right-Tail Normal distributions are fitted using the mirrored spread method to estimate the distribution’s parameters.

The at-site differences in fits derived through regionalization in log space are given in Tables 28a and 28b, and derived through regionalization in quasi-log space are given in Tables 29a and 29b.

Table 28a: Goodness of Fit per 

 Flow Relative to At-Site Sequences  of Annual Peak Flows Derived through Regionalization in Log Space 

River
Median

 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  






Inflection Point
50-Point
Mirrored Spread


Upper Mississippi Basin

St. Paul
4.600
0.023
-0.005
0.005*
0.009

Winona
4.956
0.025
-0.005
0.005*
0.009

Dubuque
5.119
0.026
-0.005
0.005*
0.010

Clinton
5.125
0.026
-0.005
0.005*
0.010

Keokuk
5.252
0.026
-0.005
0.005*
0.011

Hannibal
5.324
0.027
-0.005
0.005*
0.011

St. Louis
5.694
0.028
-0.006
0.006*
0.011

Average
5.153
0.026
-0.005
0.005
0.010

Std. Deviation
0.336
0.002
0.000
0.000
0.001


Missouri Basin

Sioux City
5.173
0.016
0.036
0.010*
0.016

Omaha
5.182
0.016
0.036
0.010*
0.016

Nebraska City
5.248
0.016
0.037
0.010*
0.016

St. Joseph
5.239
0.016
0.037
0.010*
0.016

Kansas City
5.329
0.016
0.037
0.011*
0.016

Booneville
5.401
0.016
0.038
0.011*
0.016

Hermann
5.484
0.016
0.038
0.0118
0.016

Average
5.294
0.016
0.037
0.011
0.016

Std. Deviation
0.116
0.000
0.001
0.000
0.000


Pooled Basins

Average
5.223
0.021
0.016
0.008
0.013

Std. Deviation
0.252
0.005
0.022
0.003
0.003

* Minimum Absolute Difference in Fit





Table 28b: Goodness of Fit per 

 Flow Relative to At-Site Sequences  of Annual Peak Flows Derived through Regionalization in Log Space 

River
Median

 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  






Inflection Point
50-Point
Mirrored Spread


Upper Mississippi Basin

St. Paul
4.600
0.069
0.032*
-0.046
0.041

Winona
4.956
0.074
0.035*
-0.050
0.045

Dubuque
5.119
0.077
0.036*
-0.051
0.046

Clinton
5.125
0.077
0.036*
-0.051
0.046

Keokuk
5.252
0.079
0.037*
-0.052
0.047

Hannibal
5.324
0.080
0.037*
-0.053
0.048

St. Louis
5.694
0.085
0.040*
-0.057
0.051

Average
5.15
0.077
0.036
-0.052
0.046

Std. Deviation
0.336
0.005
0.002
0.003
0.003


Missouri Basin

Sioux City
5.173
0.145
0.160
0.134*
0.140

Omaha
5.182
0.145
0.161
0.135*
0.140

Nebraska City
5.248
0.147
0.163
0.136*
0.142

St. Joseph
5.239
0.147
0.162
0.136*
0.142

Kansas City
5.329
0.149
0.165
0.139*
0.144

Booneville
5.401
0.151
0.167
0.140*
0.146

Hermann
5.484
0.154
0.170
0.143*
0.148

Average
5.294
0.148
0.164
0.138
0.143

Std. Deviation
0.116
0.003
0.004
0.003
0.003


Pooled Basins

Average
5.223
0.113
0.100
0.043
0.095

Std. Deviation
0.252
0.037
0.066
0.098
0.050

* Minimum Absolute Difference in Fit





Table 29a: Goodness of Fit per 

 Flow Relative to At-Site Sequences  of Annual Peak Flows Derived through Regionalization in Quasi-Log Space 

River
Median

 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  






Inflection Point
50-Point
Mirrored Spread


Upper Mississippi Basin

St. Paul
4.600
0.115
-0.041
-0.005*
0.041

Winona
4.956
0.124
-0.045
-0.005*
0.045

Dubuque
5.119
0.128
-0.046
-0.005*
0.046

Clinton
5.125
0.128
-0.046
-0.005*
0.046

Keokuk
5.252
0.131
-0.047
-0.005*
0.047

Hannibal
5.324
0.133
-0.048
-0.005*
0.048

St. Louis
5.694
0.142
-0.051
-0.006*
0.051

Average
5.153
0.129
-0.046
-0.005
0.046

Std. Deviation
0.336
0.008
0.003
0.000
0.003


Missouri Basin

Sioux City
5.173
0.072
0.186
0.052*
0.078

Omaha
5.182
0.073
0.187
0.052*
0.078

Nebraska City
5.248
0.073
0.189
0.052*
0.079

St. Joseph
5.239
0.073
0.189
0.052*
0.079

Kansas City
5.329
0.075
0.192
0.053*
0.080

Booneville
5.401
0.076
0.194
0.054*
0.081

Hermann
5.484
0.077
0.197
0.055*
0.082

Average
5.294
0.074
0.191
0.053
0.079

Std. Deviation
0.116
0.002
0.004
0.001
0.002


Pooled Basins

Average
5.223
0.101
0.072
0.024
0.063

Std. Deviation
0.252
0.029
0.123
0.030
0.017

* Minimum Absolute Difference in Fit





Table 29b: Goodness of Fit per 

 Flow Relative to At-Site Sequences  of Annual Peak Flows Derived through Regionalization in Quasi-Log Space 

River
Median

 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  



 EMBED "Equation" \* mergeformat  






Inflection Point
50-Point
Mirrored Spread


Upper Mississippi Basin

St. Paul
4.600
0.377
0.207*
-0.216
0.253

Winona
4.956
0.406
0.223*
-0.233
0.273

Dubuque
5.119
0.420
0.230*
-0.241
0.282

Clinton
5.125
0.420
0.231*
-0.241
0.282

Keokuk
5.252
0.431
0.236*
-0.247
0.289

Hannibal
5.324
0.437
0.240*
-0.250
0.293

St. Louis
5.694
0.467
0.256*
-0.268
0.313

Average
5.153
0.423
0.232
-0.242
0.283

Std. Deviation
0.336
0.028
0.015
0.016
0.018


Missouri Basin

Sioux City
5.173
0.724
0.828
0.678*
0.709

Omaha
5.182
0.725
0.829
0.679*
0.710

Nebraska City
5.248
0.735
0.840
0.687*
0.719

St. Joseph
5.239
0.733
0.838
0.686*
0.718

Kansas City
5.329
0.746
0.853
0.698*
0.730

Booneville
5.401
0.756
0.864
0.708*
0.740

Hermann
5.484
0.768
0.877
0.718*
0.751

Average
5.294
0.741
0.847
0.693
0.725

Std. Deviation
0.116
0.016
0.019
0.015
0.016


Pooled Basins

Average
5.223
0.582
0.539
0.226
0.504

Std. Deviation
0.252
0.167
0.320
0.486
0.230

* Minimum Absolute Difference in Fit





On a regional basis, either in log space or quasi-log space, the Right-Tail Normal distribution provides a better fit to the regional distribution than the Pearson Type III distribution. Refer to Tables 27a and 27b above. Through regionalization in log space, the at-site fits are derived by multiplying the regional differences in fits by the at-site medians of the flows at the sites. Thus, the ranking of the regional differences in the fits is identical to the rankings of the derived at-site differences for any given site. Refer to Tables 27a, 28a and 28b above. Similarly, through regionalization in quasi-log space,  the ranking of the regional differences in the fits is identical to the rankings of the derived at-site differences for any given site. Refer to Tables 27b, 29a and 29b above.

Assessment of Variances of Differences in Fits

The 

 values and their corresponding probabilities relating to the variances of the at-site differences in the fits of the Pearson Type III distribution and the Right-Tail Normal distribution derived through regionalization in log space and quasi-log space are given in 30a and 30b.

Table 30a: F Values Based on At-Site Fits of the Pearson Type III and the Right Tail Normal Distributions to Observed Distributions Derived through Regionalization in Log Space and Quasi-Log Space


Log Space

Quasi-Log Space

Method
50-Year Peak Flow
100-Year Peak Flow

50-Year Peak Flow
100-Year Peak Flow


Upper Mississippi Basin

Inflection
0.040
0.218 

0.130
0.301

50-Point
0.040
0.444

0.002
0.329

Mirrored Spread
0.160
0.360

0.130
0.450


Missouri Basin

Inflection
5.444
0.001

6.612
1.306

50-Point
0.444
0.862

0.510
0.876

Mirrored Spread
1.000
0.930

1.148
0.958


Pooled Basins

Inflection
17.355
0.196

18.016
3.674

50-Point
0.291
7.033

1.083
8.487

Mirrored Spread
0.312
1.837

0.356
1.901

Table 30b: Probability of F Values Based on At-Site Fits of the Pearson Type III and the Right Tail Normal Distributions to Observed Distributions Derived through Regionalization in Log Space and Quasi-Log Space


Log Space

Quasi-Log Space

Method
50-Year Peak Flow
100-Year Peak Flow

50-Year Peak Flow
100-Year Peak Flow


Upper Mississippi Basin

Inflection
0.999
0.957

0.987
0.915

50-Point
0.999
0.827

1
0.899

Mirrored Spread
0.979
0.880

0.987
0.823


Missouri Basin

Inflection
0.029
0.999

0.018
0.377

50-Point
0.827
0.569

0.783
0.562

Mirrored Spread
0.500
0.534

0.436
0.520


Pooled Basins

Inflection
0.000
0.997

0.000
0.013

50-Point
0.983
0.001

0.444
0.000

Mirrored Spread
0.978
0.143

0.963
0.130

In neither log space or quasi log space is the null hypothesis, 

, for the Upper Mississippi basin and the Lower Missouri basin. However, if the basins are pooled, then the null hypothesis is rejected relative to certain methods of estimating the parameters of the Right-Tail Normal distribution. Rejecting the null hypothesis does not weaken the argument that in either log space or quasi-log space, the Right-Tail Normal distribution provides a better it to the regional distribution than the Pearson Type III distribution.

Assessment of Means of Differences in Fits

Table 31a: t Values Based on At-Site Fits of the Pearson Type III and the Right Tail Normal Distributions to Observed Distributions Derived through Regionalization in Log Space and Quasi-Log Space


Log Space

Quasi-Log Space

Method
50-Year Peak Flow
100-Year Peak Flow

50-Year Peak Flow
100-Year Peak Flow


Upper Mississippi Basin

Inflection
47.713
19.597

51.885
16.040

50-Point
31.808
56.230

42.136
55.343

Mirrored Spread
22.589
13.908

24.417
11.088


Missouri Basin

Inflection
63.306
116.739

68.650
11.334

50-Point
33.430
6.309

28.023
5.658

Mirrored Spread
0
3.099

5.874
1.846


Pooled Basins

Inflection
0.780
8.228

0.380
0.424

50-Point
7.818
2.395

6.888
2.501

Mirrored Spread
4.626
1.047

0.063
0.504

Table 31b: Probability of t Values Based on At-Site Fits of the Pearson Type III and the Right Tail Normal Distributions to Observed Distributions Derived through Regionalization in Log Space and Quasi-Log Space


Log Space

Quasi-Log Space

Method
50-Year Peak Flow
100-Year Peak Flow

50-Year Peak Flow
100-Year Peak Flow


Upper Mississippi Basin

Inflection
0.000
0.000

0.000
0.000

50-Point
0.000
0.000

0.000
0.000

Mirrored Spread
0.000
0.000

0.000
0.000


Missouri Basin

Inflection
0.000
0.000

0.000
0.000

50-Point
0.000
0.000

0.000
0.000

Mirrored Spread
1
0.009

0.000
0.009


Pooled Basins

Inflection
0.433
0.000

0.410
0.675

50-Point
0.000
0.024

0.000
0.019

Mirrored Spread
0.000
0.143

0.017
0.230

In both log space and quasi-log space, the null hypothesis is rejected for the Upper Mississippi basin and the Missouri basin. The differences in the means of the differences in the fits of the regional distribution by the Pearson Type III distribution and the Right-Tail Normal distribution cannot be ascribed to chance. Thus, the argument that the Right-Tail Normal distribution provides a better fit to the regional distribution, and consequently to the at-site distributions derived through regionalization, than the Pearson Type III distribution is strengthen. If the basins are pooled, then the null hypothesis is not rejected with certain methods used to estimate the parameters of the Right-Tail Normal distribution. In any case, an argument can be made in favor of the Right-Tail Normal distribution over the Pearson Type III distribution.

Postscript

Central to the above discussions of trend and persistence and of risk and uncertainty was the assumption iid assumption, the assumption that a sequence of 

 annual flood flows is a realization of a sequence of 

 independent and identically distributed random variables. An assessment of trend and persistence or of risk and uncertainty on a site by site basis, whether on at-site terms or on regionalized terms is not complete without some account of the covariance structure of the 

 flow sequences used in the assessment. The covariance structure defines the structure of linear correlation among the flow sequences. In a large region, if 

 is small and the sequence sites are widely dispersed, the covariance/correlation structure likely would not have a significant effect upon the assessment, except perhaps if all sites are on a single river course. 

Recently, Douglas et al (2000) took direct account of spatial correlation – covariance/correlation structure – in assessment of trends in floods and low flows. An account of the covariance/correlation structure general presumes a specific multivariate distribution. In most cases, it is presumed that the multivariate distribution is Normal  in either real space or log space. The assumption of normality provides greater depth and scope in hydrologic analyses than any other assumption of the multivariate distribution given the extensive development of the multivariate Normal distribution. 

The Right-Tail Normal distribution introduced above as a univariate distribution of annual floods can be generalized as a multivariate Right-Tail Normal distribution  to accommodate flood studies on a regional basis. Nonetheless, non-Normal multivariate distributions of annual floods and for other hydrologic phenomena, e.g. annual low floods, any arbitrary element of the spectrum of extreme flows, are important to hydrology. Various statistical techniques have been developed for generating variate values for bivariate distributions having specified marginal distributions. A technique developed by Johnson (1978) is presented in Appendix M. The technique is used to generate bivariate sequences of values having Pearson Type III, say in log space, and Log Pearson Type III, say in real space, marginal distributions.

The assumption of normality has its advantages not only in dealing with the spatial covariance/correlation structure, but also in dealing with the temporal covariance/correlation structure, i.e. in time series analyses.

The objectives of water resources development, or of any developmental enterprize, are future expectations, more specifically future economic expectations. Because the future cannot be totally comprehended, the decisions to effect future expectations are almost always made in a state of uncertainty. The more distant the future is from the present, the less the future will mirror the past. The uncertainty that arises from the future not mirroring the past is referred to by Davidson (1991) as true uncertainty. It is problematic as to whether or not true uncertainty may be substituted for by probability. 

The matter of true uncertainty has not been explored in the field of water resources. It can be argued that the definition of uncertain in the Principles and Guidelines (U.S. Water Resources Council: 1983) is in effect a definition of true uncertainty. However, the wording does not make it clear that that is indeed the case. The Council states that uncertainty is an integral part of water resources development, implying that uncertain must be addressed in the course of water resources investigation. Even if the Council’s definition of uncertainty is a definition of true uncertainty, then uncertainty (Council’s definition) must be measured by a metric other than probability.

It remains to be seen if true uncertainty underlines the development of water resources, and if so how true uncertainty is to be measured. Is Shackle’s (1949) index of surprise a meaningful measure of true uncertainty in water resources investigation? Is that that the uncertainty in water resources investigation is not true uncertainty, but uncertainty that may be substituted for by probability?
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