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Flood Frequency Analysis in the 

Upper Mississippi and Missouri Basins

Introduction

Flood frequency analysis has its origins in the suggestion of George Rafter, State Engineer and Surveyor of the the State of New York, in his 1895 report to the state of New York that floods be examined in the context of the theory of errors. Within 20 years, flood frequency analysis evolved into its present form. In 1914, Allen Hazen laid the analytical framework of flood frequency analysis in applying the Normal distribution to the logarithms of flood flows, thereby introducing the Log-Normal distribution to hydrology. In the following years, other distributions where fitted to flood sequences. In the 1940s and 1950s extreme value distributions were introduced to hydrology. See e.g Gumbel (1941, 1954). In a paper fundamental to the theory of extreme values, Gnedenko (1943) showed that under a set of stability conditions for any initial distribution, there are only three limiting distributions of the largest (smallest), where the limiting distibutions of the largest and smallest values are not necessarily the same.

Beginning in the 1960s, the federal water agencies sought, under the auspices of the U.S. Water Resource Council, to develope a consistent basis for estimating the design flood at a specific site by different federal agencies. The effort led to the adoption of the Log-Pearson Type III distribution. Guidelines for applying the distribution are currently given in Bulletin 17-B (Interagency Committee on Water Data:1981). The agencies are required to use the Log-Pearson Type III distribution unless there is sufficient reason for using another distribution. Such reason is hard to establish given that different distribution do not vary greatly among themselves within their “central” portions, whereas the tails of the distributions vary considerably. The lengths of hydrologic sequences are not sufficiently long to allow for strong dicrimination among the distribution via available methods of parameter estimation. Thus, under the guidelines of Bulletin 17-B, there is little opportunity for advancing an alternative to the Log-Pearson Type III distribution.

The Log-normal distribution is a special case of the Log-Pearson distribution. If in log-space, the skewness of a sequence of events is zero, and such that the events are distributed as Normal, then the transformed events in real-space are distributed as Log-Normal. The special case is the exception rather than the rule. The extreme value distributions are not special cases of the Log-Pearson Type III distribution. The fact that the extreme value distributions are difficult to justfy under the guidelines of Bulletin 17-B has not deterred water agencies abroad from applying them to floods study. In particular, water agencies within the United Kingdom have adapted Jenkinson’s (1955) generalized extreme value distribution to flood frequencies analyses.

A major focus of reasearch in flood frequency analysis is on the development of improved estimates of the shape parameter of the Log-Pearson Type III distribution. The shape parameter is related to the coefficient of skewness. In this regard, note should be taken of Thomas’ (Professor Emiratus, Harvard University) Wakeby distribution, which was introduced to hydrology by Houghton (1977, 1978). Though the distribution has not been considered as a serious alternative to the Log-Pearson Type III distribution, it motivated the development of probability weighted monents (Greenwood et al: 1979) which in turn led to L-Moments (Hoskings: 1990) as alternatives to the conventional methods of moments and maximum likelihood for estimating the parameters of distributions.

The basic assumption underlying the guidelines of Bulletin 17-B is that a sequence of flood flows are identical independent distributed (iid) random variables. The assumption is called into question by the hydrologic community in general and by the U.S. Army Corps of Engineers in particular in reference to their flood studies in the Missouri and Upper Mississippi basins. Concern over climate change prompts concerns over hydrologic change. With respect to the flood studies in the basin, the question of the viability of the iid assumption is couple with the question of whether or not the relative large drainage areas are a factor in flood frequency analysis. Both questions are addressed in the following discussions.

Background

Flood frequency analysis provides an estimate the 

 flood, where in general, 

 is of the order of 100 years. Refer to Appendix A. The goodness of an estimate is directly dependent upon the length of the flood sequence at the site of interest. Statistically, the longer the sequence is, the better the estimate is. If historical observations are not available at the site of interest or if the historical sequence is of small length, then the estimate obtained via techniques of information transfer from gaged sites to the site of interest is poorer than would be the case if there was a sequence at the site of interest with length comparable to the lengths of the sequences at the sites from which information was transferred. Estimates based on techniques of information transfer are referred to as regionalized estimates. Some philosophic issues that arise in flood frequency analysis are briefly noted in Appendix B.

In the following discussions, a technique of information transfer is utilized, but appraisal of that and other techiques is not covered. To facilitate comparisons of flow statistics between sites, the flows are expressed in standarduized form. More specifically, given a sequence of flows 

, the sequence of standardized flows is 

, where 
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Data Base

The specific sites–7 in the Missouri basin and 13 in the Upper Mississippi basin– and the historical records at the sites are noted in Table 1, where the sites for each basin are arranged in order from upstream to downstream.

Table 1: Selected Gaging Station on the Missouri and Mississippi Rivers

Location
Drainage Area
Record

Length
Time

Span
Missing 

Year


(mi2)




MissouriRiver

Sioux City, Iowa
314,600
100
1898-1997
None

Omaha, Neb.
322,820
100
1898-1997
None

Nebraska City, Neb.
414,420
100
1898-1997
None

St. Joseph, Mo.
429,340
100
1898-1997
None

Kansas City, Mo.
489,162
100
1898-1997
None

Booneville, Mo.
505,710
100
1898-1997
None

Hermann, Mo.
528,200
100
1898-1997
None

Mississippi River

Annoka, Minn.
19,600
65
1931-1995
None

St. Paul, Minn.
36,800
131
1867-1997
1871

Winona, Minn.
59,200
111
1885-1995
1923

McGregor, Iowa
67,500
59
1937-1995
1990

Dubuque, Iowa
82,000
118
1879-1996
None

Clinton, Iowa
85,600
122
1875-1996
None

Keokuk, Iowa
119,000
122
1875-1996
None

Hannibal, Mo.
137,000
118
1879-1996
None

Louisiana, Mo.
140,700
68
1928-1995
1976

Alton/Grafton, Mo.
171,300
69
1928-1996
1988

St. Louis, Mo.
697,013
135
1861-1995
1988

Chester, Ill.
708,563
71
1926-1996
None

Thebes, Ill.
713,200
64
1933-1996
None

The drainage areas for the Missouri basin sites have a range of about 214,000 sq. mi. with all the drainage areas being of the same order of magnitude, namely 6. Above St. Louis, Mo., the drainage areas of the Upper Mississippi basin have a range of about 152,000 sq. mi. with the drainage areas varying over 2 orders of magnitude, namely from 5 to 6. The Missouri River joins the Mississippi River above St. Louis, Mo. and thus greatly increases the drainage areas of the Mississippi River below Alton/Grafton Mo. For all the Upper Mississippi sites, the range of drainage areas is about 694,000 sq. mi. with the drainage areas varying over 2 orders of magnitude, namely 5 to 6–nearly 5 to 7. 

At all the Missouri sites, there are 100 years records spanning the common period, 1898-1997. Within that period, there are no years with missing observations. At the Upper Mississippi sites, the record lengths vary from 59 years to 135 years. The years 

covered range from 1861 (St. Louis) to 1997 (St. Paul). There is one year of missing data at each of 6 sites. The sequences are shown in Appendix C.

Statistical Descriptions of Flood Sequences

A statistical description of a sequence is given in terms of 10 statistics: 1) mean, 2) standard deviation, 3) maximum observation, 4) minimum observation, 5) range of observations, 6) coefficient of variation, 7) coefficient of skewness, 8) coefficient of kurtosis, 9) first-order autocorrelation coefficient, and 10) Hurst coefficient. The first eight statistics do not depend upon the sequential order of the observations. The last two statistics, which do depend upon the sequential order of the observations, are measures of persistence–tendency of flow for one year to be related to flows in previous years. The statistics are defined in Appendix D.

The sequences are statistically described for three specific periods of record. The first specific period, referred to as the complete record, is the time span of observation. For the Missouri sequences, the complete records span the common period 1898-1997. For the Upper Mississippi sequences, the complete records vary among the sequences, ranging from 59 years (McGregor, Iowa) to 135 years (St. Louis, Missouri). The second specific period, referred to as the early partial record, is the 48-year period, 1898-1945. For this period, statistical descriptions are given for each of the 7 Missouri sequences. However, for this period, statistical descriptions of the Upper Mississippi sequences are limited to the 7 sequences whose observations span the period. The third specific period, referred to as the recent partial record, is the 50-year period, 
1946-1945. This period applies to all the Missouri and to all the Upper Mississippi sequences. 

A summary account of the description, in terms of the mean and median values of the discriptors for the two basins, is given in Table 2. The descriptions at each of the sites for each of the three specific periods are given in Appendix E.

Table 2: Flood Experience in the Missouri and Upper Mississippi Basin

Discriptor
Period of Record


Entire 
Early 
Recent 


Mean
Median
Mean
Median
Mean
Median


Missouri

Coeff. Variation
0.430
0.430
0.357
0.341
0.485
0.492

Coeff. Skewness
1.457
1.457
0.249
0.075
1.801
1.644

Coeff. Kurtosis
4.803
4.973
0.021
-0.427
5.488
5.492

Autocorr. Coeff.
0.091
0.075
0.260
0.292
-0.012
-0.009

Hurst Coeff.
0.662
0.679
0.780
0.778
0.665
0.675


Upper Mississippi

Coeff. Variation
0.397
0.370
0.360
0.341
0.390
0.364

Coeff. Skewness
0.803
0.710
0.186
0.229
0.949
0.807

Coeff. Kurtosis
1.281
0.779
-0.418
-0.403
1.253
0.724

Autocorr. Coeff.
0.150
0.158
0.207
0.203
0.057
-0.008

Hurst Coeff.
0.726
0.733
0.709
0.697
0.679
0.659

From Table 2, it is seen that the mean and median values are in general agreement indicating that both values provide a consistent account of the central tendency in the distributions of the site discriptions. The values of central tendency vary among the three specific periods. For both basins, the relative variability among the observations, measured by the coefficient of varation, tends to be smaller with the early partial record and larger within the recent partial record. Also, the coefficients of skewness and kurtosis tend to be smaller within the early partial record and larger within the recent partial record. In general the persistence in the observations tends to be greater within the early partial record and lesser within the recent partial record.

The values of central tendency given in Table 2 indicate a contrast between the two basins. In particular, the Missouri observations are distributed with greater skewness than the Upper Mississippi observations, and the Missouri observations are distributed with considerably greater kutosis than the Upper Mississippi observations. The Upper Mississippi observations tend to be more persistent than the Missouri observations. For both basins, the early partial records indicate a greater degree of persistence than either the recent partial records or the complete records.Whether or not the differences in the measures of central tendency in the statistical descriptions within the specific periods 

and between the basins are statistically significant is left as an open question. At this level of analysis, the significant point is that the temporal patterns in the observations vary over time and such that the two basin are differ in their statistical descriptions.

Annual flood sequences have long been assumed to be realizations of stationary, independent processes, such that the observed floods are variate values of independent and identically distributed (iid) random variables. Studies devoted to improving methodology for flood frequency analysis continue to be based on the iid assumption. Current interest in climate change and it’s potential impacts on hydrology in general and on floods in particular calls into question the iid assumption. Whether flood frequency analysis should continue to be pursued under the assumption or not is presently unsettled. A few studies have addressed the issue of nonstationarity described as trend in flood flows over time. However, little attention has been given to whether or not the assumption of temporal independence should continue to be accepted or if it should be rejected. The following discussions address both issues – temporal trend and temporal dependence.

Trend Assessment

A trend, positive or negative, has a beginning and an end. A sustained positive trend would in time become limited by the carrying capacity of the stream’s drainage area. And a sustained negative trend would in time render the stream dry. It is reasonable to assume that between these extreme hydrologic states, the slope of a positive (negative) trend decreases (increases) as the flow regime approaches a new state of equilibrium. It is also reasonable to assume that a linear trend begins as a nonlinear trend as the flow regime departs from a state of equilibrium, and that in time, the linear trend will become nonlinear as the flow regime approaches a new state of equilibrium. Such a pattern may be a “trend” rather than a trend. More specifically, the “trend” may be a segment of an oscillatory wave. For hydrologic sequences, it is unlikely that an oscillatory wave would have a fixed periodicity. If the oscillatory wave is itself real, it may perhaps best be described as reflecting persistence of short or long memory. Thus trend assessment is best pursued relative to persistence.

Consequently, an assessment of trend would be enhanced by taking into account the evolution of the sequence. The account provides a focus on the time at which the assessment is made relative to the time the sequence began. By considering the evolution of a sequence, it can be ascertained how trend assessment would have changed over time. This past to present view is complimented by a present to past view, i.e. by an assessment of trend considering alternate dates at which the sequence began, where the alternate dates are within the historical time span of the sequence. The two views serve to remind us that the future may contradict the past. Paleo-records allow the more remote past to be assessed relative to the historical record (the observed sequence of flows), but the future remains unknown.

Any trend/persistent assessment should consider the extent to which the observed sequences are correlated with one another. The greater the correlation, the greater the redundancy in the information provided by the sequences. The extent to which the temporal pattern of one sequence is reflected in another sequence varies directly with the degree of redundancy in the information content of the sequences. 

An evolutionary trend assessment is undertaken for annual flood sequences for selected sites in the Upper Mississippi and Missouri Basins. The sequences are examined to determine if they are characterized by statistically meaningful trends and if detected trends are reflective of hydrologic persistence or whether persistence is a manifestation of trend. Trends are limited to those in the mean defined by the linear regression of time (year) on flow (flood). A statistically meaningful trend is taken to be a statistically significant regression at the 5% level and at the 1% level. As time is regressed on flow for only one sequence, the regression is said to be a simple regression. Each sequence is assessed under the null hypothesis that the regression coefficient is equal to zero. In the case of a simple regression, the null hypothesis is equivalent to the null hypothesis that the coefficient of correlation between time and flow is equal to zero. At a specific level of significance, if the regression coefficient is significant or not, then the correlation coefficient is significant or not at the specified level of significance. Herein, discussions are focused on the correlation coefficients. The issue of temporal dependence is addressed in terms of the estimates of the first order autocorrelation coefficient and the Hurst coefficient.

The assessment draws on selected flood sequences, 7 at sites in the Missouri Basin and 13 at sites in the Upper Mississippi Basin, where the time spans of the sequences are all within the period 1861 to 1997. See Table 1 above.

Evolutionary Account of Flow Sequences

In the following assessment of trend, the evolution of a flood sequence is taken into the account. This account provides a focus on the time at which we make the assessment relative to the time the sequence began. By considering the evolution of the sequence, we can ascertain how our assessment would have changed over time as the length of the sequence increases. This past to present  view is complimented by a present to past view, i.e., an assessment of trend considering alternate dates at which the record began, where the alternate dates are within the historical time span of the sequence. 

The trend assessments under the two views are summarily given in Tables 3 and 4.

Table 3: Assessment of Trend in the Missouri Basin

Length

of

Record
Period

of

Record
Corre-lation
Length

of

Record
Period

of

Record
Corre-lation
Length of

Record
Period

of

Record
Corre-lation

Sioux City
Omaha
Nebraska City

Past to Present

10
(1898-1907)
-0.071
10
(1898-1907)
0.273
10
(1898-1907)
-0.340

20
(1898-1917)
-0.089
20
(1898-1917)
0.061
20
(1898-1917)
0.510*

30
(1898-1927)
-0.356*
30
(1898-1927)
-0.105
30
(1898-1927)
-0.184

40
(1898-1937)
-0.624**
40
(1898-1937)
-0.401**
40
(1898-1927)
-0.515**

50
(1898-1947)
-0.355*
50
(1898-1947)
-0.220
50
(1898-1947)
-0.390**

60
(1898-1957)
-0.103
60
(1898-1957)
0.017
60
(1898-1957)
-0.171

70
(1898-1967)
-0.086
70
(1898-1967)
0.041
70
(1898-1967)
-0.083

80
(1898-1977)
-0.154
80
(1898-1977)
-0.029
80
(1898-1977)
-0.165

90
(1898-1987)
-0.138
90
(1898-1987)
0.007
90
(1898-1987)
-0.087

100
(1898-1997)
-0.173
100
(1898-1997)
-0.009
100
(1898-1997)
-0.078

Present to Past

10
(1997-1988)
0.526
10
(1997-1988)
0.570
10
(1997-1988)
0.778**

20
(1997-1978)
0.126
20
(1997-1978)
0.203
20
(1997-1978)
0.079

30
(1997-1968)
-0.047
30
(1997-1968)
0.043
30
(1997-1968)
0.208

40
(1997-1958)
-0.062
40
(1997-1958)
0.016
40
(1997-1958)
0.026

50
(1997-1948)
-0.242
50
(1997-1948)
-0.165
50
(1997-1948)
-0.069

60
(1997-1938)
-0.150
60
(1997-1938)
-0.054
60
(1997-1938)
0.000

70
(1997-1928)
-0.029
70
(1997-1928)
0.050
70
(1997-1928)
0.144

80
(1997-1918)
-0.059
80
(1997-1918)
0.040
80
(1997-1918)
0.133

90
(1997-1908)
-0.116
90
(1997-1908)
0.011
90
(1997-1908)
-0.048

100
(1997-1898)
-0.173
100
(1997-1898)
-0.009
100
(1997-1898)
-0.078

* 5% Level of Significance; ** 1% Level of Significance

Table 3: Assessment of Trend in the Missouri Basin (Continued)

Length

of

Record
Period

of

Record
Corre-lation
Length

of

Record
Period

of

Record
Corre-lation
Length of

Record
Period

of

Record
Corre-lation

St. Joseph
Kansas City
Boonville

Past to Present

10
(1898-1907)
0.392
10
(1898-1907)
0.166
10
(1898-1907)
0.180

20
(1898-1917)
0.128
20
(1898-1917)
0.046
20
(1898-1917)
0.130

30
(1898-1927)
0.193
30
(1898-1927)
-0.174
30
(1898-1927)
-0.110

40
(1898-1937)
-0.260
40
(1898-1937)
-0.462**
40
(1898-1937)
-0.357**

50
(1898-1947)
-0.120
50
(1898-1947)
-0.296*
50
(1898-1947)
-0.156

60
(1898-1957)
0.083
60
(1898-1957)
-0.136
60
(1898-1957)
-0.151

70
(1898-1967)
0.190
70
(1898-1967)
-0.135
70
(1898-1967)
-0.138

80
(1898-1977)
0.121
80
(1898-1977)
-0.145
80
(1898-1977)
-0.157

90
(1898-1987)
0.178
90
(1898-1987)
-0.145
90
(1898-1987)
-0.026

100
(1898-1997)
0.223*
100
(1898-1997)
-0.015
100
(1898-1997)
0.101

Present to Past

10
(1997-1988)
0.654*
10
(1997-1988)
0.446
10
(1997-1988)
0.411

20
(1997-1978)
0.277
20
(1997-1978)
0.402
20
(1997-1978)
0.313

30
(1997-1968)
0.256
30
(1997-1968)
0.336
30
(1997-1968)
0.441

40
(1997-1958)
0.126
40
(1997-1958)
0.264
40
(1997-1958)
0.397**

50
(1997-1948)
0.019
50
(1997-1948)
0.081
50
(1997-1948)
0.320

60
(1997-1938)
0.160
60
(1997-1938)
0.090
60
(1997-1938)
0.242

70
(1997-1928)
0.252
70
(1997-1928)
0.220
70
(1997-1928)
0.304*

80
(1997-1918)
0.226
80
(1997-1918)
0.177
80
(1997-1918)
0.277*

90
(1997-1908)
0.217
90
(1997-1908)
0.053
90
(1997-1908)
0.141

100
(1997-1898)
0.223*
100
(1997-1898)
-0.015
100
(1997-1898)
0.101

* 5% level of significance; ** 1% level of significance

Table 3: Assessment of Trend in the Missouri Basin (Continued)

Length

of

Record
Period

of

Record
Corre-lation

Herman

Past to Present

10
(1898-1907)
0.266

20
(1898-1917)
0.179

30
(1898-1927)
0.100

40
(1898-1937)
-0.159

50
(1898-1947)
0.051

60
(1898-1957)
-0.033

70
(1898-1967)
0.002

80
(1898-1977)
-0.005

90
(1898-1987)
0.114

100
(1898-1997)
-0.224*

Present to Past

10
(1997-1988)
0.495

20
(1997-1978)
0.374

30
(1997-1968)
0.435

40
(1997-1958)
0.381

50
(1997-1948)
0.372**

60
(1997-1938)
0.263*

70
(1997-1928)
0.325**

80
(1997-1918)
0.296**

90
(1997-1908)
0.234

100
(1997-1898)
-0.224*

* 5% Level of Significance; ** 1% Level of Significance

Table 4: Assessment of Trend in the Upper Mississippi Basin 

Length

of

Record
Period

of

Record
Corre-lation
Length

of

Record
Period

of

Record
Corre-lation
Length of

Record
Period

of

Record
Corre-lation

Anoka
St. Paul
Winona

Past to Present

7
(1931-1937)
0.717
6
(1872-1877)
-0.120
14
(1924-1937)
0.204

17
(1931-1947)
0.768**
16
(1872-1887)
-0.194
24
(1924-1947)
0.488

27
(1931-1957)
0.613**
26
(1872-1897)
-0.110
34
(1924-1957)
0.562**

37
(1931-1967)
0.424**
36
(1872-1907)
-0.055
44
(1924-1967)
0.419**

47
(1931-1977)
0.315*
46
(1872-1917)
0.013
54
(1924-1977)
0.411**

57
(1931-1987)
0.239
56
(1872-1927)
-0.144
64
(1924-1987)
0.369**

65
(1931-1995)
0.113
66
(1872-1937)
-0.280*
72
(1924-1995)
0.305**




76
(1872-1947)
-0.159







86
(1872-1957)
0.059







96
(1872-1967)
0.115







106
(1872-1977)
0.157







116
(1872-1987)
0.192*







125
(1872-1996)
0.199*




Present to Past

8
(1995-1988)
0.819*
9
(1996-1988)
0.580
8
(1995-1988)
0.566

18
(1995-1978)
-0.161
19
(1996-1978)
0.120
18
(1995-1978)
-0.028

28
(1995-1968)
-0.256
29
(1996-1968)
-0.150
28
(1995-1968)
-0.174

38
(1995-1958)
-0.126
39
(1996-1958)
0.043
38
(1995-1958)
0.032

48
(1995-1948)
-0.183
49
(1996-1948)
-0.040
48
(1995-1948)
-0.037

58
(1995-1938)
-0.154
59
(1996-1938)
0.067
58
(1995-1938)
0.074

65
(1995-1931)
0.113
69
(1996-1928)
0.259*
72
(1995-1924)
0.305**




79
(1996-1918)
0.321**







89
(1996-1908)
0.270*







99
(1996-1898)
0.262**







109
(1996-1888)
0.256**







119
(1996-1878)
0.225**







125
(1996-1872)
0.199*




* 5% Level of Significance; 1% Level of Significance

Table 4: Assessment of Trend in the Upper Mississippi Basin  (Continued)

Length

of

Record
Period

of

Record
Corre-lation
Length

of

Record
Period

of

Record
Corre-lation
Length of

Record
Period

of

Record
Corre-lation

Dubuque
Clinton
Keokuk

Past to Present

9
(1879-1887)
-0.232
13
(1875-1887)
0.154
9
(1879-1887)
-0.151

19
(1879-1897)
-0.193
23
(1875-1897)
0.028
19
(1879-1897)
-0.250

29
(1879-1907)
-0.075
33
(1875-1907)
-0.023
29
(1879-1907)
-0.139

39
(1879-1917)
-0.133
43
(1875-1917)
-0.226
39
(1879-1917)
-0.226

49
(1879-1927)
-0.091
53
(1875-1927)
-0.235
49
(1879-1927)
-0.234

59
(1879-1937)
-0.151
63
(1875-1937)
-0.374
59
(1879-1937)
-0.326*

69
(1879-1947)
0.093
73
(1875-1947)
-0.198
69
(1879-1947)
-0.184

79
(1879-1957)
0.176
83
(1875-1957)
-0.159
79
(1879-1957)
-0.146

89
(1879-1967)
0.223*
93
(1875-1967)
-0.097
89
(1879-1967)
-0.046

99
(1879-1977)
0.286**
103
(1875-1977)
-0.030
99
(1879-1977)
0.044

109
(1879-1987)
0.330**
113
(1875-1987)
0.008
109
(1879-1987)
0.110

118
(1879-1996)
0.310**
122
(1875-1996)
0.007
118
(1879-1996)
0.147

Present to Past

9
(1996-1988)
0.519
9
(1996-1988)
0.630
9
(1996-1988)
0.364

19
(1996-1978)
0.096
19
(1996-1978)
0.192
19
(1996-1978)
0.196

29
(1996-1968)
-0.079
29
(1996-1968)
-0.036
29
(1996-1968)
0.104

39
(1996-1958)
0.061
39
(1996-1958)
0.067
39
(1996-1958)
0.130

49
(1996-1948)
0.078
49
(1996-1948)
0.098
49
(1996-1948)
0.188

59
(1996-1938)
0.042
59
(1996-1938)
0.039
59
(1996-1938)
0.202

69
(1996-1928)
0.249*
69
(1996-1928)
0.231
69
(1996-1928)
0.321**

79
(1996-1918)
0.284**
79
(1996-1918)
0.200
79
(1996-1918)
0.309**

98
(1996-1908)
0.351**
89
(1996-1908)
0.237
89
(1996-1908)
0.316**

99
(1996-1898)
0.360**
99
(1996-1898)
0.173
99
(1996-1898)
0.270*

109
(1996-1888)
0.351**
109
(1996-1888)
0.081
109
(1996-1888)
0.223*

118
(1996-1879)
0.310**
122
(1996-1875)
0.007
118
(1996-1879)
0.147

* 5% Level of Significance; ** 1% Level of Significance

Table 4: Assessment of Trend in the Upper Mississippi Basin  (Continued)

Length

of

Record
Period

of

Record
Corre-lation
Length

of

Record
Period

of

Record
Corre-lation
Length of

Record
Period

of

Record
Corre-lation

Hannibal
St. Louis
Chester

Past to Present

9
(1879-1887)
-0.051
7
(1861-1867)
0.087
12
(1926-1937)
0.476

19
(1879-1897)
-0.189
17
(1861-1877)
0.146
22
(1926-1947)
0.227

29
(1879-1907)
-0.034
27
(1861-1887)
0.228
32
(1926-1957)
-0.076

39
(1879-1917)
-0.012
37
(1861-1897)
0.112
42
(1926-1967)
-0.095

49
(1879-1927)
0.016
47
(1861-1907)
0.152
52
(1926-1977)
-0.049

59
(1870-1937)
-0.065
57
(1861-1917)
0.202
62
(1926-1987)
0.196

69
(1879-1947)
0.123
67
(1861-1927)
0.134
71
(1926-1996)
0.259*

79
(1879-1957)
0.159
77
(1861-1937)
-0.024




89
(1879-1967)
0.221*
87
(1861-1947)
0.090




99
(1879-1977)
0.329**
97
(1861-1957)
0.020




109
(1879-1987)
0.425**
107
(1861-1967)
0.002




118
(1879-1996)
0.447**
117
(1861-1977)
0.020







127
(1861-1987)
0.139




Present to Past

9
(1996-1988)
0.456
10
(1987-1978)
0.501
9
(1996-1988)
0.626*

19
(1996-1978)
0.228
20
(1987-1968)
0.467
19
(1996-1978)
0.179

29
(1996-1968)
0.168
30
(1987-1958)
0.449
29
(1996-1968)
0.356*

39
(1996-1958)
0.290
40
(1987-1948)
0.385
39
(1996-1958)
0.410**

49
(1996-1948)
0.340*
50
(1987-1938)
0.172
49
(1996-1948)
0.413**

59
(1996-1938)
0.341**
60
(1987-1928)
0.282
59
(1996-1938)
0.243

69
(1996-1928)
0.450**
70
(1987-1918)
0.246
71
(1996-1926)
0.259*

79
(1996-1918)
0.458**
80
(1987-1908)
0.141




89
(1996-1908)
0.475**
90
(1987-1898)
0.115




99
(1996-1898)
0.475**
100
(1987-1888)
0.123




109
(1996-1888)
0.477**
110
(1987-1878)
0.094




118
(1996-1879)
0.447**
120
(1987-1868)
0.120







127
(1987-1861)
0.139




* 5% Level of Significance; 1% Level of Significance

Table 4: Assessment of Trend in the Upper Mississippi Basin  (Continued)

Length

of

Record
Period

of

Record
Corre-lation

Thebes

Past to Present

5
(1933-1937)
-0.027

15
(1933-1947)
0.589*

25
(1933-1957)
-0.007

35
(1933-1967)
-0.036

45
(1933-1977)
0.007

55
(1933-1987)
0.280*

64
(1933-1996)
0.319*

Present to Past

9
(1996-1988)
0.612

19
(1996-1978)
0.267

29
(1996-1968)
0.349

39
(1996-1958)
0.399*

49
(1996-1948)
0.406**

59
(1996-1938)
0.267*

64
(1996-1933)
0.319*

* 5% Level of Significance; 1% Level of Significance

Missouri Basin

None of the 7 sequences indicate significant trends at the 1% level. For 2 of the 7 sequences, those for St. Joseph and Herman, there are significant trends at the 5% level. In both cases, the significance of the trends attains with the past to present view and with the present to past view with the inclusion of the observations for the period 1988 through 1997 and for the period 1898 through 1907, respectively. Had the assessment been made in 1988, the past to present view would not have revealed a significant trend at the 5% level. Moreover, had there been no observations for the period 1898 through 1907, the present to past view would not have indicated a significant trend at 5% level.

There are not strong indications of trends in the Missouri Basin. Whether the trends in the 2 sub-basins, St. Joseph and Herman, can be accounted for by climate change or by 

land use change or by some other kinds of change remains to be determined. In any case, it is changes that have occurred in the most recent years or changes that have occurred in the past but are just now manifesting themselves that reflect trends for the 2 sequences.

The trends may be reflections of segments of oscillatory movements of varying frequency and amplitude that may themselves be manifestations of persistence. The fact that the estimates of the first order autocorrelation coefficients for the sequences vary from 0.040 to 0.168 in the Missouri basin, and from -0.016 to 0.248 in the Upper Mississippi basin indicate that the effects of persistence may be moderate. The estimates of the Hurst coefficients vary from 0.581 to 0.701 in the Missouri basin, and from 0.656 to 0.811 in the Upper Mississippi basin. Where persistence differes significally between basins, and where persistence is of long or short memory are left as open questions.Refer to Appendix E.

Mississippi Basin

Of the 13 selected sequences for the Mississippi Basin, 10 were assessed for trends. Over the entire periods of record, 6 of the ten sequences indicate significant trends – 3 (St. Paul, Chester, Thebes) at the 5% level and 3 (Winona, Dubuque, Hannibal) at the 1% level. 

With respect to the 125-year St. Paul sequence, had the assessment been made in 1978, there would have been no indication of a significant trend at the 5% level. Thus, it is the inclusion of the most current 19 years of observations that results in a significant trend for the entire record. Had the observed record extended from 1996 back to 1938, there would have been no indication of a significant trend at the 5% level. However, as the record extended further into the past, the indications of significant trend would oscillate about the levels of 5% and 1%. With respect to the 71-year Chester sequence, it is the most current 9 years of observations that bring about a 5% significant trend for the entire record. With respect to the 64-year Thebes sequence, it is the inclusion of the most current 19 years of observations that bring about a 5% significant trend. 

With respect to the 72-year Winona sequence, the past to present view suggests that the significant trend at the 1% level is well substantiated as the levels of significance persist as the most current observation increases from 1958 to 1995. However, the present to past view indicates that if the observations for the period 1924 through 1937 were not available, the there would not be an indication of trend at the 5% level. The Winona sequence begins in 1885 and extends to 1995 with the observation for 1923 being missing. If the missing year of observation is ignored and the sequence is treated as a continuos 110-year sequence, then the correlation between time and flow is 0.157 indicating a significant trend near the 5% level. Thus, it seems as the sequence extends further into the past, the indication of a significant trend weakens. Whether the pattern would persist further into the past can not be addressed at this level of analysis.

With respect to the 118-year Dubuque sequence and the 118-year Hannibal sequence, significant trends at the 1% level are strongly indicated with both the past to present and the present to past views. These two sequences are in strong contrast to the other 8 sequences. Why this is so is an open question.

With the exception of the St. Louis sequence, the sequences include the most current years of observation. The St. Louis sequence extends from 1861 to 1996, with the 1988 observation being missing. For the period 1861 through 1987, there is no indication of a significant trend at the 5% level. If the missing year of observation is ignored and the sequence is treated as a continuos 127-year sequence, then the correlation between time and flow is 0.202 indicating a significant trend at the 5% level. Thus, it is the most current 9 years of observations that bring about a significant trend at the 5% level.

Assessment of Stationary Persistence in Flood Frequency Analysis

The forward and backward analysis of trend for selected annual flood sequences in the Upper Mississippi and Missouri (UM&M) basins lends support to the notion that the apparent structure of trend in a sequence may be represented as a realization of a stationary persistent process. The analysis provides a systematic view that the detection or non-detection of trends is keyed to the time spanned by a sequence of observations. In essence, trends “come” and “go,” i.e. trends may not be present or trends may be revealed for different segments of the sequence. This view of a sequence of observations is consistent with the view that the observations vary over time in a more-or-less oscillatory manner, such that the sequence of observations may be represented as a realization of a stationary persistent process. 

To deal with a trend, a decision must be made as to how far into the future the trend will persist. That decision has a direct bearing on the estimates of the parameters of the distribution used to assess flood risks. Estimates of the parameters derived from a sequence of observations would need to be adjusted to reflect the trend over future time. The degree of adjustment would depend upon how long the current trend is presumed to continue. If a trend is taken to be a manifestation of nonstationarity, then the degree of adjustment affects the expected values of the flood quantiles. The uncertainties attendant to the decision can not be easily resolved. What degree of concordance would be shared by flood analysts in the decision that current trends will be sustained over the next decade or two, or over the next 50 to 100 years, i.e. over the economic lives of projects for mitigating flood losses?

If, however, trends are subsumed as segments of oscillatory movements of varying frequencies and amplitudes, then operational procedures for assessing flood risks may be readily developed. If the oscillatory movements of varying frequencies and amplitudes are described in terms of stationary persistence processes, then flood frequency analysis may proceed in the manner where the expected values of the flood quantiles are not affected by relaxation of the assumption of independent and identically distributed (iid) random variables, but where persistence effects an increase in the sampling errors associated with the estimates of the quantiles. Persistence 

introduces a degree of uncertainty in the estimates of flood quantiles that may be quantitatively expressed, thereby assuring that a high degree of concordance in assessments of flood risks can be obtained. For there to be a high degree of concordance, flood frequency analysis will need to be approached within the context of stationary time series analysis.

If the representation of a flood sequence as a realization of a stationary persistent process is meaningful, then conducting flood frequency analysis in accordance with Bulletin 17-B (Interagency Committee on Water Data: 1981) presents a number of problems. The bulletin presumes annual flood sequences to be realizations of sequences of independent and identically distributed random variables. Under the iid assumption, the bulletin proposes that federal agencies represent the probability distribution of annual floods as a Log-Pearson distribution unless evidence indicates that another representation is in order. If the evidence is that the assumption of independence should be replaced by the assumption of persistence, then a representation of the distribution of annual floods by some distribution other than the Log-Pearson distribution might have greater operational merit. The Log-Pearson distribution has no direct connection to a stationary persistent process, and moreover, the Log-Pearson distribution has no direct analytical transformation to the Normal distribution. The Log-Pearson distribution can be transformed numerically to the Normal distribution. See Appendix F.

A distribution that has a direct analytical connection to a Markov-Normal process is the Log-Normal distribution. The degree to which the Log-Normal distribution is representative of the annual flood sequences in the  UM&M basins is assessed below. The matter of assessment is not cast in the form of goodness of fit of the Log-Normal distribution over the Log-Pearson distribution. Rather the assessment is simply in terms of the extent to which the Log-Normal distribution fits the upper tail of the distribution of annual floods in the UM&M basins under the assumption that the flood sequences are realizations of stationary persistent processes. 

In the following discussions, only the two-parameter Log-Normal distribution and the two-parameter Log-Pearson distribution are considered.

Real and Log Space

To compare the distribution of the annual floods in real space with the distribution of the annual floods in log space, the sequences of flows, i.e. the sequences in real space, and the sequences of the logs of the flows, i.e. the sequences in log space, are both expressed in standardized units, whereby the sequences in either space have zero mean and unit standard deviation. The coefficients of skewness and kurtosis in either space are not affected by standardization. Via standardization of the flows and of the logs of the flows, the distributions in real space and in log space may be compared with the Normal distribution. The comparison provides a basis for assessing the general goodness to which the Log-Normal distribution represents the upper tail of the distribution of flows.

To view the sequences in the context of regionalization, regionalized distributions of for the two basins are given in both real and log space. The regionalized distribution are constructed via the flood-index method. See Appendix G.

Log-Normal Distribution

Assume that a sequence of observations, 

, are variate values of a sequence of iid random variables. Let
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If 

 is distributed as Normal with mean and variance
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then 

 is distributed as Log-Normal with parameters 

 and 

, where the mean and variance of 

 are given as
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The skewness and kurtosis of 

 are defined as
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where
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See Appendix H.

If 

 is distributed on the interval 

 as Log-Normal, then 

 is distributed on the interval 

 as Normal.

See e.g. Aitchison and Brown (1957) and Johnson and Kotz (1970).

Log-Pearson Distribution

If 

 is distributed as Pearson Type III, referred to herein simply as Pearson, with parameters 

 and 

, then
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The skew and kurtosis of the distribution of 

 are given as
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For the Pearson distribution, the coefficients of skewness and kurtosis are related as
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Refer to Eqs. (14) and (15).

In real space, the Log-Pearson distribution is characterized by
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where 

 may be positive or negative, but 

 must be greater than zero. See Appendix H.

If 

, then 

 is distributed with positive skewness on the interval 

 and 

 is distributed with positive skewness on the interval 

. If 

, then 

 is distributed with negative skewness on the interval 

 and 

 is distributed with skewness less than or greater than zero on the interval 

. If in real space, floods are bounded above, then floods may be distributed with positive or negative skewness. If, however, in real space floods are unbounded above, then floods will be distributed with positive skewness in both real and log space. 

The logs of flood flows tend to yield negative values of skewness and consequently negative values of 

, such that the Log-Pearson distribution is bounded above. If, however, floods are distributed with long, stretched upper tails, then the Log-Pearson 

distribution may fall short in representing the upper tails of the distributions of floods. 

From Eqs. (17) through (20), it is noted that in real space if 

, then the mean is not defined; if 

, then the variance is not defined; 

, then the skewness is not defined; and if 

, then the kurtosis is not defined. In general, if 

, then moments of order 

 in real space are not defined even though in log space, moments of all orders equal to or greater than zero are defined.

It can be shown that as 

, the Pearson distribution approaches the Normal distribution, and consequently the Log-Pearson distribution approaches the Log-Normal distribution. Thus, the Normal (Log-Normal) distribution is a special case of the Pearson (Log-Pearson) distribution. Although the Log-Pearson distribution has no direct analytical transformation to the Normal distribution, it can be numerically transformed to the Normal distribution. See Appendix F.

See e.g. Elderton (1953), Johnson and Kotz (1970), Wadsworth and Bryan (1960) and Bulletin 17-B.

Stationarity and Persistence

Assume a sequence of the logs of flows,
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to be a realization of a stochastic process that is second order stationary defined as
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where 

 is independent of 

, and 

 and 

  denote the mean and standard deviation of 

  

 

. Second order stationarity implies that the process is stationary in the mean and variance. More generally, 

 order stationarity implies stationarity in all moments of order 

. Stationarity at any order requires that 

. The parameter 

 is the coefficient of autocorrelation between 

 and 

, which is a measure of persistence, that is the degree to which high values tend to follow 

high value and low values tend to follow low values if 

, or the degree to which high values tend to follow low values and conversely if 

. The autocorrelation between 

 and 

 is given by
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where 

 denotes the order of the autocorrelation, and where 

. The process defined by Eq. (22) is known as the Markov process and is referred to as a first order autoregressive process, or equivalently as an autoregressive-moving average (ARMA) process of order (1,0).

Log-Normal Case

If 

 is distributed as Normal 

, then 

 must be distributed as Normal 

 in order for 

 to be distributed as 

 

 – the sum of two Normally distributed random variable is Normally distributed. Under the assumption of Normality, all odd order moments of 

 are equal to zero and all even order moments are functions of 

,
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where 

 denotes the 

 order moment of 

 

. Thus, under the assumption of Normality, the Markov process is strictly stationary.

If the logs of the flows are generated by a Normal-Markov process, where 

  and 

, then the flows themselves are generated by a strictly stationary process 
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where, 

, 

 is Log-Normally distributed with parameters 

 and 

, whereby, 

, 

, 

, 

, and 



. And
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where 

 is Normally distributed with zero mean and unit variance 

.

The correlation between 

 and 

 , i.e. the first order autocorrelation in real space, is defined as
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whereby the first order autocorrelations in real space and log space are related as


 EMBED "Equation" \* mergeformat  


(28)

The autocorrelation in log spaced, measured by, 

, may assume values in the range 

. From Eq. (24), it is noted that if 

, then 

, and if 

, then 

. 

However, if 

, then 

. In log space, the parameter 

  denotes the standard deviation, and in real space, the value of 

 determines the value of skewness. As 

, the skewness in real space, 

, tends to zero and 

, and as 

, 

 tends to infinity and 

. In general, 

 if 

, and 

 if 

.See Figure 1.
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Given that 

 is Log-Normally distributed and 

 is Log-Normally distributed, 

 is Log-Normally distributed – the product of independently distributed Log-Normal random variables is Log-Normally distributed. Under the assumption of Normality in log space, all moments exist in both real and log space.

If the three-parameter Log-Normal distribution had been considered, then the reproductive property of the two parameter Log-normal distribution, namely, the product of Log-normally distributed random variable is Log-Normally distributed, would not hold even if the variables were independently distributed. Thus in the case of the three parameter Log-Normal distribution, stationarity in real space would be compromised.

Log-Pearson Case

Assume that the logs of flows are generated by a Markov process


 EMBED "Equation" \* mergeformat  


(29)

where 

 

. Let
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where, 

, 

 is distributed with zero mean: 

 

. Thus the process is stationary in the mean. The process is second order stationary if 



 EMBED "Equation" \* mergeformat  

 , and if 

 

, assuming that the 

 order moments are defined.

For 

 to be third order stationary 

, the skewness of 

 must be related to the skewness of 

 

 as
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If 

 is positive (negative) then 

 is positive (negative). If 

, then 

. In general, 

. The relation between 

 and 

 conditioned on specific values of 

 is shown in Figure 2a.
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From Eq. (31) it is noted that 

. See Figure 2b.
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For 

 to be fourth order stationary 

, the kurtosis of 

 must be related to the kurtosis of 

 

 as
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Given that 

 can not be negative, then 

 is positive if 
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otherwise, 

 is negative. But a Pearson, or any other distribution, can not have negative kurtosis. For 

 to be distributed such that the generating Markov process is at least fourth order stationary, then
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If 

, then 

, and if 

, then 

. See Figure 3a. 
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From Eq. (28), it is noted that 

 if 

, and 

 if 

. See Figure 3b.
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Under the assumption that 

 is distributed as Pearson 

, Eq. (16) is satisfied. Upon solving Eqs (31) and (232) for 

 and 

 and substituting in Eq. (19),

the relation between 

 and 

 becomes
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If 

, then Eq. (35) reduces to Eq. (16) with y replaced by 

, in which case 

 is distributed as Pearson. If, however, 

, Eq. (35) does not reduce to Eq. (16), and therefore 

 is not distributed as Pearson.

If it is assumed that 

 is distributed as Pearson, then the relation between 

 and 

 does satisfy Eq. (16) unless 

.

In real space, the generating process of annual floods is given as
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where
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The order of stationarity in real space corresponds to the order of stationarity in log space that in turn, corresponds to the highest order moment that is defined by the value of the parameter 

.

In the case of the two parameter Log-Pearson distribution, the reproductive property holds, namely, the product of independent Log-Pearson random variables is distributed as a two parameter Log-Pearson distribution conditioned on 

. The reproductive property does not hold in the case of three parameter Log-Pearson distributions even if 

. Thus in the three parameter Log-Pearson case, stationarity in real space is compromised, just as in the case of the three parameter Log-Normal distribution.

Distribution of Floods

Regional Distributions

The above discussions indicate that the uncertainties attendant to using the Log-Pearson distribution in flood frequency analysis are compounded if the iid assumption underlying the practice as detailed by Bulletin 17-B is replaced by an assumption of stationary persistence. The assumption of stationary persistence is suggested by the variation of trend over time displayed by flood sequences. The uncertainties attendant to the use of the Log-Normal distribution in flood frequency analyses under the assumption of stationary persistence are marginally compounded relative to those under the iid assumption. The goodness to which the Log-Normal distribution represents the upper tails of the distributions of floods at selected sites in the UM&M basin is illustrated below. 

The goodness is gaged relative to a hypothetical distribution of normal standardized values. The hypothetical distribution is interpreted as the distribution of a hypothetical population of annual floods that are “truly” distributed as Normal in log space. As such, the hypothetical distribution is not a distribution fitted to the distribution of floods in log space pertaining for any one of the selected sites. The hypothetical distribution permits upper tails of the flood distributions in log space to be compared to the upper tail of a Normal distribution independently of the lower tails of the flood distributions in the same space.

Regionalized distributions of standardized floods in real and log space for the UM&M basins, as well as the hypothetical distribution, are shown in Figures 4 and 5. 
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Figures 4 and 5 show that the upper tails of the distributions in log space are well represented by the Normal distribution. In log space, the Normal distribution provides good representation of both the lower and the upper tails of the Missouri regionalized distribution. The extreme lower tail of the Mississippi regionalized distribution in log space is not well represented by the Normal distribution. The good representation of the upper tail of the distributions in log space by the Normal distribution implies good representation of the upper tails of the distributions in real space by the Log-Normal distribution.

Comparison of the regionalized distributions for the two basin are shown in real space in Figure 6 and in log space in Figure 7.
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Figure 6 illustrates that in real space the Normal distribution does not provide a good representation of the upper tails of the regionalized distributions for either basin. The Normal distribution provides a better representation of the upper tails in log space as shown by Figure 7.

The distributions pertaining to each of the sites in the Missouri basin and in the Upper Mississippi basin are given in Appendices I and J, respectively. With respect to each of the basins, the individual distributions in real and log space are quite similar to one another and to the basin regionalized distributions. The upper tail of each of the distributions in log-space are well represented by the normal distribution. The similarity between the distribution should be considered with caution given that the sequences are cross-correlated, whereby there is redundancy in the information yielded by the sequences. 

Bulletin 17-B provides procedures for fitting the Log-Pearson distribution to a sequence over the full range of observations and their associated estimated exceedence probabilities. The procedures call for determining if there are low outliers, and if so to remove them from the ordered set of observations. With the outliers removed, the Log-Pearson distribution is fitted to the abbreviated ordered set. Given that the Log-Normal distribution provides a good representation of the upper tails of flood distributions, fitting procedure alternative to that given in Bulletin 17-B should be considered, namely, a proceedure that effectively decouples the upper tail from the lower tail and thereby allows the upper tail to be fitted in a manner that is marginally effected by the lower tail. The details of the procedure remain to be developed.

It remains to be seen if the goodness of the Log-Normal distribution’s representation of the upper tails in real space for selected sequences in the UM&M basins is limited to those sequences or not. Because the annual floods for the selected sequences in the basins are correlated, there is redundancy in the information yielded by the sequences. A broader spatial base is needed before a strong statement can be made about the merits of the Log-Normal distribution in conducting flood frequency analyses under the assumption of stationary persistence. A broader spatial base would permit the upper tails of distributions relating to small, moderate and large drainage basins to be assessed relative to the upper tail of the Log-Normal distribution.

Postscript

For both the Normal and the Log-Normal distribution, all moments of integer order 

 exist. Thus in estimating the parameters of either distribution, no questions arise regarding the existence of moments. Although all moments of integer order 

 exist in log space for the Pearson distribution, moments of specific order may not exist in real space for the Log-Pearson distribution. Because a finite sequence returns finite estimates of moments, the estimates of the parameter in real space may not be in accord with the population values of the parameters. That is, the population values of the parameters may imply the non-existence of specific moments, even though finite values of the parameter are returned by the finite sequence. Thus in estimating the parameters of the Log-Pearson distribution, there is a degree of uncertainty about the estimates owing to the fact that the moments upon which the estimates are based may not exist.

Little would be gained in assessing flood risks under the assumption of stationary persistence by turning to the extreme value (EV) distributions. The theory of EV leads to three types of EV distribution under rather general conditions. See e.g. Galambos (1978). The three types of EV distributions were expressed in a common form, referred to as the generalized extreme value (GEV) distribution, by Jenkinson (1955). In terms of the EV distributions, stationary persistence may be formulated in real space by a Markov-EV process. However, for any of the three EV distributions, flow and the random component of the process can not both be distributed as EV. Moreover, if flow is distributed as EV, then the random component must be distributed such that Eqs. (25) and (26) are satisfied. The difficulties that would be encountered in using the EV distributions to assess flood risk under the assumption of stationary persistence would parallel those that would be encountered in using the Log-Pearson distribution.

In the above discussions, stationary persistence was limited to Markovian processes. Other processes, such as ARMA processes, merit consideration. Also, some attention should be given to long-term memory processes, such as fractional noise processes. 

However, these alternatives to Markovian processes are not likely to enhance the capabilities of Log-Pearson and Extreme Value distributions relative to those of  the Log-Normal distribution in assessing flood risks under the assumption of stationary persistence.

Limitations of Data Base

Stronger conclusions can not be drawn from the above analyses owing to the limitations imposed by the data base. The two principal limitations derived from the small number of sites, 20 (7in the Missouri basin and 13 in the Upper Mississippi Basin), and from the correlations between the sequences which limit the amount of information that can be extracted from the 20 sequences.

Inter-Basin and Intra-Basin Correlations

Within both basins, the sites are on the main rivers draining the basins, and therefore, the observations at one site are expected to be related to the observations at an other site, such that the relation between the observations becomes weaker as the distance between the sites increases. To what extent the observations at a site in one basin are related to the observations a site in the other basin remains to be determined. It is expected, however, that the relation between the observations at downstream sites will ternd to be stronger than the relation between observations between upstream sites.

The inter-basin correlations are given in Tables 5a and 5b, and the intra-basin correlations are given in Table 5c. For the Upper Mississippi basin, three sites, namely, McGregor, Louisiana City and Alton/Grafton are not considered in measuring the inter-basin and intra-basin correlations. The 7 Missouri sites, yield 28 pairings. Excluding the 7 paring of sies with themselves, there are 21 pairings for determining the inter-basin correlations. The correlation of for a site paired with itself is unity. For the 10 Upper Mississippi sites, there are 45 pairing for determining the inter-basins correlations, excluding the 10 pairing of sires with themselves. The 7 Missouri sites and the 10 Upper Mississippi sites yield 70 pairings for determining the intra-basin correlations.

Table 5a: Inter-Basin (Missouri) Correlations


Sioux City, Iowa
Omaha, Neb.
Nebras-ka City, Neb.
St. Joseph, Mo.
Kansas City, Mo.
Boon-ville, Mo.
Her-mann, Mo.

Sioux City, Iowa
1







Omaha, Neb.
0.957
1






Nebraska City, Neb.
0.895
0.905
1





St. Joseph, Mo.
0.755
0.847
0.836
1




Kansas City, Mo.
0.487
0.523
0.594
0.705
1



Boonville, Mo.
0.399
0.449
0.553
0.681
0.901
1


Hermann, Mo.
0.296
0.360
0.441
0.590
0.769
0.894
1

Table 5b: Inter-Basin (Mississippi) Correlations


Anoka, Minn.
St. Paul, Minn.
Winona, Minn.
Dubu-que, Iowa
Clinton, Iowa
Keokuk. Iowa
Han-nibal, Mo.

Anoka, Minn.
1







St. Paul, Minn.
0.884
1






Winona, Minn.
0.844
0.888
1





Dubuque, Iowa
0.737
0.738
0.845
1




Clinton, Iowa
0.716
0.698
0.825
0.904
1



Keokuk. Iowa
0.510
0.580
0.588
0.770
0.812
1


Hannibal, Mo.
0.444
0.576
0.544
0.739
0.677
0.901
1

St. Louis, Mo.
0.1349
0.454
0.341
0.515
0.560
0.681
0.746

Chester, Ill.
0.310
0.413
0.337
0.497
0.557
0.712
0.777

Thebes, Ill.
0.281
0.408
0.334
0.483
0.535
0.714
0.794

Table 5b: Inter-Basin (Mississippi) Correlations (Continued)


St. Louis, Mo.
Chester, Ill.
Thebes, Ill.

St. Louis, Mo.
1



Chester, Ill.
0.981
1


Thebes, Ill.
0.975
0.997
1

Table 5c: Intra-Basin (Missouri-Mississippi) Correlations


Sioux City, Iowa
Omaha, Neb.
Nebras-ka City, Neb.
St. Joseph, Mo.
Kansas City, Mo.
Boon-ville, Mo.
Her-mann, Mo.

Anoka, Minn.
0.513
0.520
0.500
0.522
0.343
0.267
0.186

St. Paul, Minn.
0.380
0.446
0.438
0.542
0.457
0.430
0.364

Winona, Minn.
0.329
0.359
0.366
0.435
0.444
0.357
0.271

Dubuque, Iowa
0.268
0.369
0.334
0.486
0.425
0.403
0.439

Clinton, Iowa
0.358
0.426
0.390
0.498
0.486
0.464
0.458

Keokuk. Iowa
0.250
0.347
0.375
0.546
0.557
0.588
0.596

Hannibal, Mo.
0.196
0.309
0.347
0.540
0.508
0.601
0.651

St. Louis, Mo.
0.353
0.386
0.428
0.494
0.675
0.825
0.884

Chester, Ill.
0.348
0.386
0.490
0.549
0.648
0.798
0.876

Thebes, Ill.
0.299
0.336
0.444
0.515
0.631
0.793
0.876

For the Missouri basin, the inter-basin correlations range from 0.296 to 0.957 , with the mean being 0.659 and the median being 0.680. For the Upper Mississippi basin, the inter-basin correlations range from 0.296 to 0.904, with the mean being 0.639 and the median being 0.682. The measures of central tendency of the inter-basin correlations are consistent among themselves. These measures do not distinguish one basin from another. As is to be expected, the inter-basin correlations diminish as one site becomes more remote from the other.

The intra-basin correlations range from 0.186 to 0.884, with the mean being 0.467 and the median being 0.442. The two measures of central tendency are consistent. The effect of remoteness on the intra-basin correlations is not as sharp as the effect on the inter-basin correlations, in asmuch as remoteness is not as sharply defined by upstream-downstream location between basins as within basins.

Redundancy of Information

Positive correlation between sequences of observations implies that there is a degree of redundancy in the information yielded by the sequences. If the correlation equaled zero, then there would be no redundancy, in which case the information content yielded by the sequences would equal the sum of the information contents yielded by each of the sequences. The greater the correlation, the greater the degree of redundancy. If the correlation between the sequences is unity, then the information 

yielded by the two sequences is no more than the information yielded by one of the sequences.

The redundancy of information within and between basins may be measured by the effective information content at time,
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where 

 denotes the number of station-years of data accumulated up to time 

, 

 denotes the gaging stations operating at time 

, and 

 denotes the average correlation between the flows of the paired sequences. See Matalas and Barnes (1977). The percent redundancy of information is defined as
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If 

, then 

, in which case 

, i.e. there is no redundancy of information. If 

 and 

 

, then 

, in which case, 

. And therefore as 

, 

.

For the Missouri basin, 

, 

 station-years, 

 

 and 

. Therefore, 

 station-years. Thus, over the 100-year time span 
1898-1997, the percent redundancy of information is 

. For the Mississippi basin, 

 and summation term in the denominator of Eq. (1) is equal to 8,102. Given 

, then 

, in which case 

. The redundancy is very nearly the same for the two basins. In the intra-basin case, 

 and the summation term in the denominator of Eq. (1) is equal to 24,944. Given 

, then 

, in which case, 

.

If the two basins are treated as a single basin, then 

 and the summation term in the denominator of Eq. (1) is equal to 24,944. Given 

, then 

, in which case 

.

Distance-Correlation Relation

Distances between Sites

The geographic coordinates – latitude (

) and longitude (

) to the nearest hundredth degree –  of each of the cities near the specific stations on the Missouri River and Mississippi River are given in Table 6.

Table 6: Geographic Coordinates of Cities near Gaging Stations

Station Name
Latitude (

)
Longitude (

)

Missouri River

Sioux City, Iowa
42.50
-96.47

Omaha, Neb.
41.25
-96.00

Nebraska City, Neb.
40.68
-95.83

St. Joseph, Mo.
39.77
-94.87

KansasCity, Mo.
39.03
-94.55

Boonville, Mo.
38.97
-92.71

Hermann, Mo.
38.71
-91.43

Mississippi River

Anoka, Minn.
45.18
-93.33

St. Paul, Minn.
45.00
-93.17

Winona, Minn.
44.03
-91.62

Dubuque, Iowa
42.52
-90.68

Clinton, Iowa
41.25
-90.20

Keokuk, Iowa
40.38
-91.42

Hannibal, Mo.
39.68
-91.33

Louisiana City, Mo.
39.45
-91.03

Alton, Ill.
38.92
-90.17

St. Louis, Mo.
38.67
-90.25

Chester, Ill.
37.92
-89.83

Thebes, Ill.
37.20
-89.43

The great circle distance between two points, 

  and 

, on the surface of a spherical Earth is given by
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where
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and
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where 

 and 

 denote the latitude and longitude of 

, and 

 and 

 denote the latitude and longitude of 

. The Earth’s spherical radius 

 is assumed the be the radius 

 of a spheroid equivalent to the 1866 Clarke ellipsoid. 
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(See John P. Synder, 1982).

The great circle distances, measured in units of kilometers, between the cities near the stations are given in Tables 7a and 7b.

Table 7a: Great Circle Distances between Stations on the Missouri River


Sioux City, Iowa
Omaha, Neb.
Nebras-ka City, Neb.
St. Joseph, Mo.
Kansas City, Mo.
Boon-ville, Mo.
Her-mann, Mo.

Sioux City, Iowa
0







Omaha, Neb.
144
0






Nebraska City, Neb.
209
65
0





St. Joseph, Mo.
332
190
130
0




Kansas City, Mo.
418
276
214
87
0



Boonville, Mo.
504
378
327
206
159
0


Hermann, Mo.
599
481
435
319
272
115
0

Table 7b: Great Circle Distances between Stations on the Mississippi River


Anoka, Minn.
St. Paul, Minn.
Winona, Minn.
Dubu-que, Iowa
Clinton, Iowa
Keokuk. Iowa
Han-nibal, Mo.

Anoka, Minn.
0







St. Paul, Minn.
24
0






Winona, Minn.
186
164
0





Dubuque, Iowa
364
341
184
0




Clinton, Iowa
505
482
330
147
0



Keokuk. Iowa
556
533
406
246
141
0


Hannibal, Mo.
663
611
484
320
199
78
0

Louisiana City, Mo.
665
642
512
343
212
109
36

Alton, Ill.
743
720
581
403
259
194
131

St. Louis, Mo.
767
744
607
430
287
215
146

Chester, Ill.
858
835
696
517
372
306
235

Thebes, Ill.
945
922
782
601
455
393
322

Table 7b: Great Circle Distances between Stations on the Mississippi River (Continued)


Louis-iana City, Mo.
Alton, Ill.
St. Louis, Mo.
Chester, Ill.
Thebes, Ill.

Louisiana City, Mo.
0





Alton, Ill.
95
0




St. Louis, Mo.
110
29
0



Chester, Ill.
199
115
91
0


Thebes, Ill.
286
202
179
87
0

Correlation vs. Distance

The relation between correlation and distance is defined as the linear regression of distance on correlation:
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where
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and
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where 

  and 

 denote the mean values of 

 and 

, 

 denotes the covariance between 

 and 

, and 

 denotes the variance of 

.

If the variable a is infact a constant 

, the regression of distance on correlation is constrained:
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where
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Equation (48) may be written as
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where
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If 

 is taken to be 

, then 

 and 

. In this case the relation of correlation with distance passes through the point (

,

). If 

 is take to be equal to unity, then the relation of correlation with distance passes through the point (

,

). The constrained relation seeks to satisfy the fact that if the stations are paired with themselves, then for the paired stations, necessarily 

 and 

.

The unconstrained and the constrained correlation-distance relations are shown in Figures 8 and 9 for the Missouri River where stations paired with themselves are include and in Figure 9 where stations paired with themselves are excluded.
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From Figures 8 and 9, the correlation-distance relations for the Missouri and Mississippi Rivers are seen to be quite linear. The greater density of the scatter about the line of linear regression for the Mississippi River data is owing to the greater number of stations along the Mississippi. The slopes of the regression lines are nearly the same for the two rivers. However, distance explains about 78% (=(R* = 0.883)2) of the variation among the correlations for the Missouri River and about 69% (=(R* = 0.833)2) for the Mississippi River. The difference in the percentages may derive from the fact that greater flow is contributed by tributaries intermediate to the stations along the Mississippi River than along the Missouri River. 

For the Missouri River, R ( 1 for D = 0, whereas, for the Mississippi River, R ( 0.86 for D = 0. Strictly, it should be that R = 1 for D = 0. 

The great circle distances are surrogate measures of the distances between the stations in asmuch as the great circle distance is a geometric measure of distance superposed on a natural system, i.e. the drainage system. The U.S. Army Corps of Engineers has measured the distances between the stations along the navigation channels of the Mississippi River. The distances in units of kilometers are given in Table 8.

Table 8: Distances between Stations along the Navigation Channel of the Mississippi River


Anoka, Minn.
St. Paul, Minn.
Winona, Minn.
Dubu-que, Iowa
Clinton, Iowa
Keokuk. Iowa
Han-nibal, Mo.

Anoka, Minn.
0







St. Paul, Minn.
42
0






Winona, Minn.
239
198
0





Dubuque, Iowa
460
418
221
0




Clinton, Iowa
560
518
320
100
0



Keokuk. Iowa
808
766
569
348
248
0


Hannibal, Mo.
895
854
656
435
336
88
0

Louisiana City, Mo.
939
897
700
479
379
131
44

Alton, Ill.
1,068
1,027
829
608
509
260
173

St. Louis, Mo.
1,105
1,064
866
646
546
298
210

Chester, Ill.
1,218
1,176
979
758
658
410
323

Thebes, Ill.
1,325
1,283
1,085
865
765
517
429

Table 8: Distances between Stations  along the Navigation Channel  of the Mississippi River (Continued)


Louis-iana City, Mo.
Alton, Ill.
St. Louis, Mo.
Chester, Ill.
Thebes, Ill.

Louisiana City, Mo.
0





Alton, Ill.
129
0




St. Louis, Mo.
167
37
0



Chester, Ill.
279
150
112
0


Thebes, Ill.
386
256
219
107
0

For the Mississippi River stations a comparison of the great circle distances between the stations and the distances between the stations along the navigation channel is shown in Figure 10.
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If the correlation-distance relation is to be considered further, then the correlation-distance relation might be approximated by a regression that satisfies the constraint R = 1 for D = 0 or R(LF) = 1 for D = 0. For the constrained regressions, distance will explain somewhat lesser percentages of the variations in the correlations. If the explained variation is still “large,” then one would need to find variables that further the explanation of the variation in the correlations. 

To look for variables that increase the degree of explanation of the variation in the coorelations is in effect to conduct research that may be outside the bounds of the study. If the research were to be successful to the extent that a very high degree of explanation is achieved, then one of the interests of the study would be served, namely defining the flood frequency at any point along the Missouri and Mississippi Rivers. The research would need to consider various physiographic and meteorologic variables as well as the effects of tributary flow. 

An Effect of Basin Scale on Flood Frequency Analysis

The effect of basin scale, i.e. the effect of the size of drainage area, is explored in reference to the estimate of the skew coefficient for an annual flood sequence. To ascertain if the magnitudes of drainage areas differentiate flood studies, a brief analysis is made to determine if estimates of the coefficient of skewness are effected by the magnitudes of drainage areas.

A Statistical Basis for Scale Effect

Assume a drainage basin is composed of n unit catchments. The drainage area of the basin is assumed to vary directly with n, whereby the greater the number of unit catchments, the larger the basin’s drainage area. Let 

 denote the outflow from the i-th unit. Assume the outflows to be variate values of random variables, 

. Let
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denote the outflow from the basin.

Assume that the unit catchment outflows are variate values of independent and identically distributed random variables. Without loss of generality, assume 
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The coefficients of skewness and kurtosis of the outflows from the i-th unit catchment are
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The basin outflow is distributed with mean, variance, skewness and kurtosis
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As n becomes large, i.e as the drainage area of the basin becomes large
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As the basin drainage area becomes large, the distribution of the basin outflow tends to a distribution that has the properties of the normal distribution in terms of skewness and kurtosis. It can be shown that the distribution of Y does indeed converge to the normal distribution as n tends to infinity. 

The converges holds under the assumption of independently and identically distributed random variables. The convergence also holds if the assumption of identically distributed random variables is relaxed. The convergence also holds if the assumption of independently distributed random variables is relaxed, but the rate of convergence is slower. If, however, the dependence among the random variables is such that the covariances are the products of standard deviations, then there is no convergence. In such a case, the limiting coefficients of skewness and kurtosis are averages of the coefficients of skewness and kurtosis of the unit catchment outflows.

One implication of the converge to normality is that regionalization of skewness is dependent upon the distribution of the drainage areas. Assume that there are K 

drainage basins under consideration. Let 

 denote the number of unit catchments in the k-th drainage basin, where 

. The outflow from the k-th drainage basin is 
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In considering regionalization of skewness, there may be some advantage in treating 

 as a random variable.

Empirical Assessment

The relation between drainage area and skewness is explored in reference to the data at the 13 sites on the Mississippi River. The associated drainage areas vary over nearly three orders of magnitude and thus provide a better basis for exploration than do the 7 Missouri River sites whose drainage areas are all of the same order of magnitude.

The values of area, log of area and skewness for the 13 Mississippi River sites are given in Table 9.

Table 9: Drainage Area vs. Skewness for Mississippi River Sites

Location
Drainage Area

DA
Log(DA)
Coeff.

Skewness


(mi2)



Annoka, Minn.
19,600
4.29
1.11

St. Paul, Minn.
36,800
4.56
1.72

Winona, Minn.
59,200
4.77
1.07

McGregor, Iowa
67,500
4.83
1.18

Dubuque, Iowa
82,000
4.91
0.55

Clinton, Iowa
85,600
4.93
0.55

Keokuk, Iowa
119,000
5.08
0.67

Hannibal, Mo.
137,000
5.14
0.61

Louisiana, Mo.
140,700
5.17
0.74

Alton/Grafton, Mo.
171,300
5.23
0.74

St. Louis, Mo.
697,013
5.84
0.71

Chester, Ill.
708,563
5.85
0.39

Thebes, Ill.
713,200
5.85
0.35

The functional relation between the log of drainage area and skewness is shown in Figure 1.
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Analytically the relation is
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where 

 denotes the log of drainage area and 

, the estimate of skewness. The correlation coefficient is -0.71, indicating that the log of drainage area explains about 50% of the variation in the estimated skews. 

Comments

With the data at hand, there appears to be a statistically significant relation between the logs of skew and the logs of area. The relation implies that  skew diminishes with an increase in area. An analytical assessment suggests that the distribution of flows approaches the Normal distribution as area becomes extremely large. Even so, the skew-area relation does not imply any fundamental difficulty in conducting flood frequency analysis. 

To pursue the matter further would require the acquisition of a larger data base with attention to the content of information yielded by the data base.  In doing so, the point raised by Rolf Olsen (COE/WR: Personal Communication, 1999) about the effect of tributary flows should be considered. An interesting case is the Nile River. With respect to the Nile, it has two major tributaries. The first is the Blue Nile which joins the Nile, actually the White Nile, to form the Nile proper at Khartoum, Sudan. The Blue Nile contributes more than 65% of the Nile’s flow during the August floods. The second and last tributary is the Atbara which joins the Nile at Atbara, Sudan. The Atbara contributes about 22% of the Nile’s flow during the August floods. 

Before bringing together data of selected rivers of the world, it might be well to consider stations on the Missouri upstream from Sioux City, Iowa. In this way, smaller drainage area would be obtained, hopefully drainage areas one and two orders of magnitude smaller than those presently being dealt with. In addition, it might be well to consider stations on the Mississippi downstream from Thebes, thereby bringing into consideration larger drainage basins, perhaps adding an other order of magnitude to the size of areas presently under consideration. If the Mississippi is tracked to Baton Rouge, La., then the effect of tributaries on the skew-area relation could be studied. Below Thebes, Ill., three large rivers enter the Mississippi, namely, the Ohio at Cairo, Ill., the Arkansas near Rosedale, Miss. and the Red near Ft. Adams, Miss.
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