

US Army Corps of Engineers Rock Island District

UPPER MISSISSIPPI RIVER ROCK ISLAND COUNTY, ILLINOIS

UPPER MISSISSIPPI RIVER SYSTEM ENVIRONMENTAL MANAGEMENT PROGRAM DEFINITE PROJECT REPORT

ANDALUSIA REFUGE REHABILITATION AND ENHANCEMENT

POOL 16, MISSISSIPPI RIVER MILES 462 THROUGH 463

ROCK ISLAND COUNTY, ILLINOIS

TECHNICAL APPENDICES

- A HYDROLOGY AND HYDRAULICS
- **B WATER QUALITY**
- C GEOTECHNICAL CONSIDERATIONS
- D STRUCTURAL DESIGN
- E HYDRAULIC DREDGING WATER COLUMN DATA
- F MECHANICAL AND ELECTRICAL CONSIDERATIONS
- **G** SEDIMENTATION STUDY
- H ILLINOIS DEPARTMENT OF CONSERVATION FISHERIES INVESTIGATION OF DEAD SLOUGH
- I WATERFOWL OBSERVATION DATA FOR ANDALUSIA REFUGE

HYDROLOGY AND HYDRAULICS

A

P

P

E

N

D

Ι

X

A

UPPER MISSISSIPPI RIVER SYSTEM ENVIRONMENTAL MANAGEMENT PROGRAM DEFINITE PROJECT REPORT (R-4)

ANDALUSIA REFUGE REHABILITATION AND ENHANCEMENT

POOL 16, RIVER MILES 462 THROUGH 463 ROCK ISLAND COUNTY, ILLINOIS

APPENDIX A

HYDROLOGY AND HYDRAULICS

TABLE OF CONTENTS

Subject		Page
General		A-1
Climate		A-1
Hydrology		A-2
Sediment Condition		A-3
Hydraulics of Proposed	Project Condition	A-3
Water Control Structure		A-4
Riprap Design		A-4
Pump Size		A-6
Diversion Ditch Design		A-7

A-i

List of Tables

<u>No.</u>	<u>Title</u>	Page
A-1	Average Monthly Precipitation	A-2
A-2	Number of Times the 2-Year Elevation Was Exceeded (1965-1987)	A-4

List of Plates

<u>No.</u>	Title
A-1	Area-Capacity Curve
A-2	Standard Flod Profiles
A-3	Elevation-Duration Curve
A-4	Elevation-Duration Curve
A-5	Elevation-Duration Curve
A-6	Elevation-Duration Curve
A-7	Channel Cross Section

UPPER MISSISSIPPI RIVER SYSTEM ENVIRONMENTAL MANAGEMENT PROGRAM DEFINITE PROJECT REPORT (R-4)

ANDALUSIA REFUGE

REHABILITATION AND ENHANCEMENT

POOL 16, RIVER MILES 462 THROUGH 463

ROCK ISLAND COUNTY, ILLINOIS

APPENDIX A

HYDROLOGY AND HYDRAULICS

GENERAL

The Andalusia Refuge area, shown on plate 1 of the main report, is located within the Upper Mississippi Wildlife and Fish Refuge between river miles 462 and 463 in Pool 16. This area, located 1 mile north of Illinois City, is currently managed as a waterfowl refuge by the Illinois Department of Conservation.

The purpose of this appendix is to present the development and evaluation of proposed improvements which will provide a water control structure system. This system will provide a moist soil management unit with controlled water levels, reduce sedimentation into the refuge area, and divert upland sedimentation from the refuge area. Approximately 1.55 square miles of overland area will drain into the moist soil management unit. The elevation area and capacity curves for the project are shown on plate A-1.

CLIMATE

The climate in east-central Iowa is characterized by extreme temperatures and moderate precipitation. The National Weather Service operates a weather station in Moline, Illinois, located about 25 miles north of Andalusia, which has over 50 years of record. Temperatures range from a maximum of 107 degrees Fahrenheit in the summer to a minimum of -26 degrees Fahrenheit in the winter. The normal temperature is 49.5 degrees Fahrenheit.

Most of the precipitation occurs in summer and fall months, with May, June, and July normally the wettest months, having a monthly average of over 4 inches. Winters are normally the driest parts of the year. The average annual precipitation is 37.2 inches and the average annual snowfall is 28 inches. Table A-1, shown below, lists the appropriate monthly precipitation amounts at the Moline gage for the 36 years of record during the periods 1951 to 1987.

TABLE A-1

Average Monthly Precipitation

Month	Inches	Month	Inches
January	1.64	July	4.88
February	1.30	August	3.76
March	2.77	September	3.74
April	3.97	October	2.70
Мау	4.21	November	2.16
June	4.32	December	1.92

HYDROLOGY

Mississippi River discharge frequency relationships and corresponding water surface profiles were promulgated by the Upper Mississippi River Basin Commission (UMRBC) in a November 1979 study entitled Upper Mississippi River Water Surface Profiles, River Mile 0.0 to River Mile 847.5. Plate A-2 presents pertinent data from this study. Actual water elevations are recorded daily at Fairport, Iowa (RM 462.0). Plates 5 and 6 of the main report show daily stage hydrographs for the period of record 1967 through 1986 (gage zero equals 535.16 feet above mean sea level (MSL). These data were used to compute monthly and year-round elevation duration relationships for the project site as presented on plates A-3 through A-6. The 50 percent duration elevation can be interpreted as the average elevation. The months of July, August, and September have the lowest normal elevations, referenced to feet above MSL, of 545.4, 545.3, and 545.3, respectively. The year round normal elevation is about 545.5 feet. Typical floods appear to last for at least 25 days and raise the water surface about 5 feet.

SEDIMENT CONDITIONS

Historical records of past sedimentation rates are essentially nonexistent. A paper by J. Roger McHenry dated March 1981 entitled "Recent Sedimentation Rates in Two Backwater Channel Lakes, Pool 14, Mississippi River" indicates widely varying deposition rates, with an average of about 0.1 foot per year. Diversion of the upland drainage from the refuge area and the proposed levee with 2-year flood protection will decrease the sedimentation rate. A detailed discussion of sedimentation is presented in Section 2 of the main report.

HYDRAULICS OF PROPOSED PROJECT CONDITION

The proposed project includes a levee constructed to provide protection from the 2-year flood event. The levee height will be 552.8 feet MSL at the most upstream end and slope to 550.8 feet MSL at the most downstream end. The levee will be tied into the natural ground elevation of 551.8 feet MSL at both ends as shown on plates 8 and 12 of the main report.

Located at the downstream end of the levee is a 600-foot armored section designed for overflow purposes. The overflow section was designed to be the area where overtopping will first occur during flood events greater than the 2-year frequency. Once overtopping of the overflow section occurs, the interior of the levee will fill before overtopping of the main levee section occurs. This will equalize the hydrostatic pressure and reduce damage during flood events greater than the 2-year frequency. The riprap for this armored section is discussed in a following section.

The area of conveyance for the 100-year flood event was computed for existing conditions and compared to that of the proposed conditions. There was approximately a 7 percent reduction in the cross-sectional area at the project site. The reduction occurs in the over bank area which does not normally convey much of the flood flow. The estimated difference in flood elevations for all floods is substantially less than 0.1 foot. A channel cross section for existing and proposed conditions is shown on plate A-7. Table A-2 lists the number of times per month the 2-year flood elevation was exceeded during the years 1965 through 1987 at the Fairport gage.

TABLE A-2

	Number	: Of	Times	The 2-Yea	r Eleva	tion
		Was	Exceed	ed (1965-	1987)	
Mont	<u>h</u>		Number	Mo	nth	Number
Janu	lary		0	Ju	ly	0
Febr	uary		0	Au	gust	0
Marc	h		3	Sej	ptember	0
Apri	1		9	0c	tober	1
May			7	Nov	vember	0
June			1	Dec	cember	0

WATER CONTROL STRUCTURE

A significant aspect of the project is the upstream gated water control structure between Dead Slough and the Refuge as shown on plate 10 of the main report. The purpose of this structure is to allow river water entry into the moist soil unit during nonmanaged periods of the year. The unit consists of one gate well with a slide gate as shown on plate 21 of the main report. The structure was designed to fill or drain the interior with 200 acre-feet of volume in a 14-day period. It was concluded that an average head of about .5 foot will be available and an area of 1.8 square feet will be required. This will be provided with a 36-inch pipe as shown on plate 21 of the main report, resulting in an average discharge velocity of approximately 4.0 feet per second.

RIPRAP DESIGN

An 18-inch layer of riprap was designed to armor the overflow portion of the levee. The overflow levee will be used in flood events to back water into the refuge area. During the initial stages of overtopping, the overflow section will have water overtopping in free flow, which is considered the most critical time for stability. For floods greater than the 2-year event, the project levee will be in a submerged state and less likely to be damaged.

Routing a typical Mississippi River flood through the overflow portion of the levee resulted in a maximum head of approximately 0.55 foot above the levee crest prior to submergence. Technical

Report NO. 2-650 "Stability of Riprap and Discharge Characteristics, Overflow Embankments, Arkansas River, Arkansas" was referenced in order to determine the stability of the overflow section. The data in this report did not cover small head elevations above the crest. However, interpolation of the data would result in the overflow section being borderline unstable if unprotected.

The overflow portion of the levee is located in a north-south direction and will be exposed to expected wind velocities as high as 70 miles per hour. In accordance with CETN-I-6 "Revised Methods for Wave Forecasting in Shallow Water," it was determined that 2.5-foot waves could be caused as a result of wind velocities, fetch, and depth of water at the project area. Due to the possible unstable condition of the overflow levee and the possible wave attack, a minimum 15-inch layer of riprap was determined to be required to armor the levee. This was based on a density 165 pcf which results in a D50 of .58 feet. However, as discussed in Appendix C - Geotechnical Considerations, based on experience 18-inch thick riprap will be provided for adequate protection during all overflow scenarios. The minimum required riprap design gradation was determined in accordance with procedures in EM 1110-1601 and ETL 1110-2-120. The following is the required minimum and the recommended gradations for the riprap:

Percent Lighter by <u>Weight</u>		ts of wt., lbs.			
	<u>Minimum</u>	Recommended			
100	170-70	150-400			
50	50-35	60-170			
15	25-10	15-50			

The riprap blanket should extend beyond the toe of the bank. A bedding layer 6 inches thick should be provided under the riprap.

Riprap protection is also recommended at the upstream gated water control structure. A horizontal blanket of riprap will be provided to prevent scour during the worst case scenario for which the velocities could be as high as 12 feet per second. This is based on assumed conditions including incorrect operation of the gate, involving opening it with low pond conditions during a 2-year flood event on the river. The required riprap blanket was determined in accordance with procedures in Research report H-70-2, "Erosion and Riprap Requirements at Culvert and Storm-Drain Outlets." The riprap blanket, as shown on plate 21 of the main report, will be 18 inches thick with a D50 of .58 foot. The minimum and recommended riprap gradation are the same as shown above for the overflow portion of the levee.

PUMP SIZE

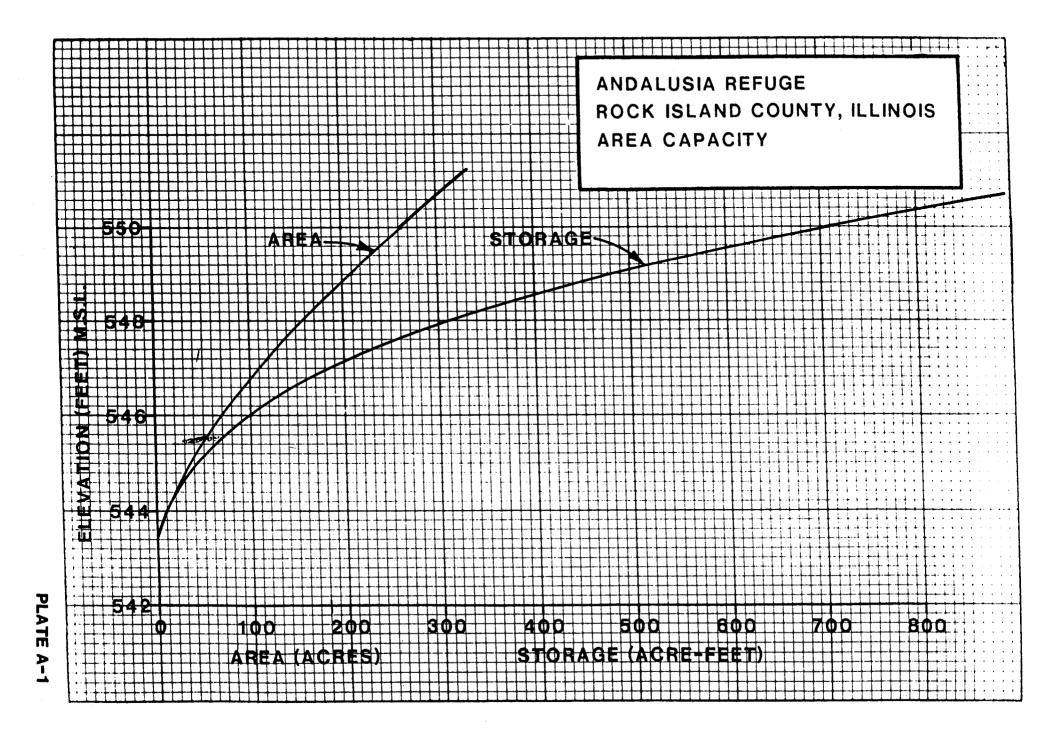
Another significant aspect of the project is the pump station located at the downstream end of the levee as shown on plate 12 of the main report. The station will be a two pump system with the capability to pump into the river from the moist soil unit during desirable periods and will also have the capability to pump from the river into the moist soil unit during low river events to ensure adequate water depth during critical periods. The effects of normal rainfall, seepage, evaporation, and upland drainage were all considered in the pump design.

One pump was designed with the capability to pump from the refuge area in order to drawdown the refuge from flat pool elevation 545 (MSL) to approximately 543.5 (MSL) within 14 days. This will be accomplished by a 5,000 gallons per minute (gpm) pump. Alternative pump sizes studied were 10,000 and 2,000 gpm. The 10,000 gpm pump would enable the refuge operator to draw down the refuge within 14 days during periods of extended high flow without utilizing gravity flow. The 2,000 and 5,000 gpm pump would utilize gravity flow to draw the refuge area down to elevation 545 feet (MSL) and then complete the drawdown to elevation 543.5 feet (MSL) within 14 days. The time increment for gravity flow from overflow elevation of 550.8 (MSL) to flat pool elevation of 545 (MSL) would depend upon river flood recession. A typical Mississippi River flood will recede approximately .5 foot per day. The Refuge area will drop at about the same rate as the river. Therefore pumping should not be initiated until the flood event passes and normal levels of approximately 545 to 546 (MSL) occur. Operating in this manner is economically consistent with a low operating budget, and meets Refuge objectives. The 5,000 gpm pump was the selected alternative based on being most economical within the desired 14-day drawdown period. The 2,000 gpm pump would require longer running time and would limit the flexibility of the Refuge operator.

The second pump was designed with the capability to raise and maintain the water elevation within the levee from elevation 545 feet (MSL) to 547.0 feet (MSL) within 10 days. This will be provided by a 3,500 gpm pump. A smaller pump would require a longer time to fill the interior and larger size would be unnecessary for typical operating procedures. Table A-3 lists the number of pumping days required to raise the water level within the MSMU to selected elevations from flat pool elevation of 545 feet (MSL). The pumping days shown are conservative estimates because average rainfall was not considered. Studies indicate that evaporation during typical pumping periods is negligible.

TABLE A-3

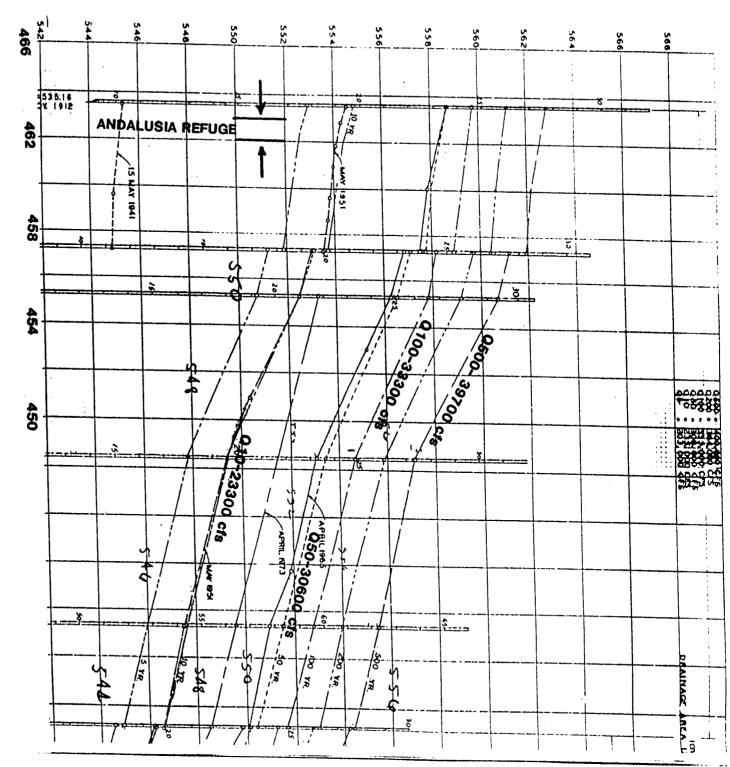
PUMPING DAYS REQUIRED

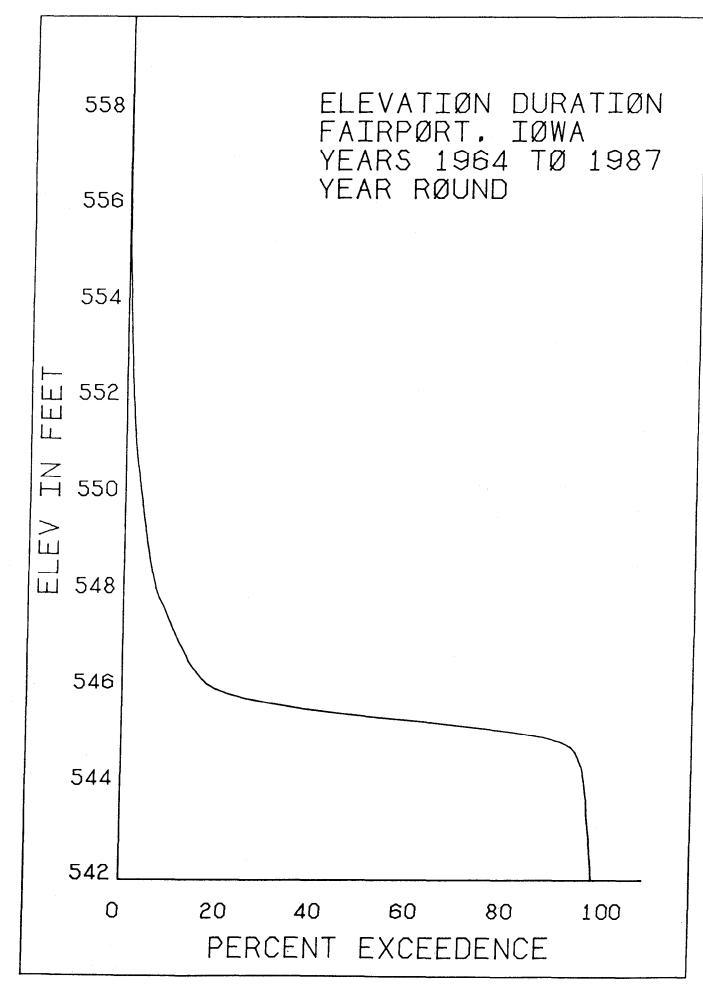

FOR 3500 GPM PUMP

ELEVATION ft. (MSL)	PUMPING DAYS
546	3.5
547	9.5
548	17
549	28
550	43
550.8	55

DIVERSION DITCH DESIGN

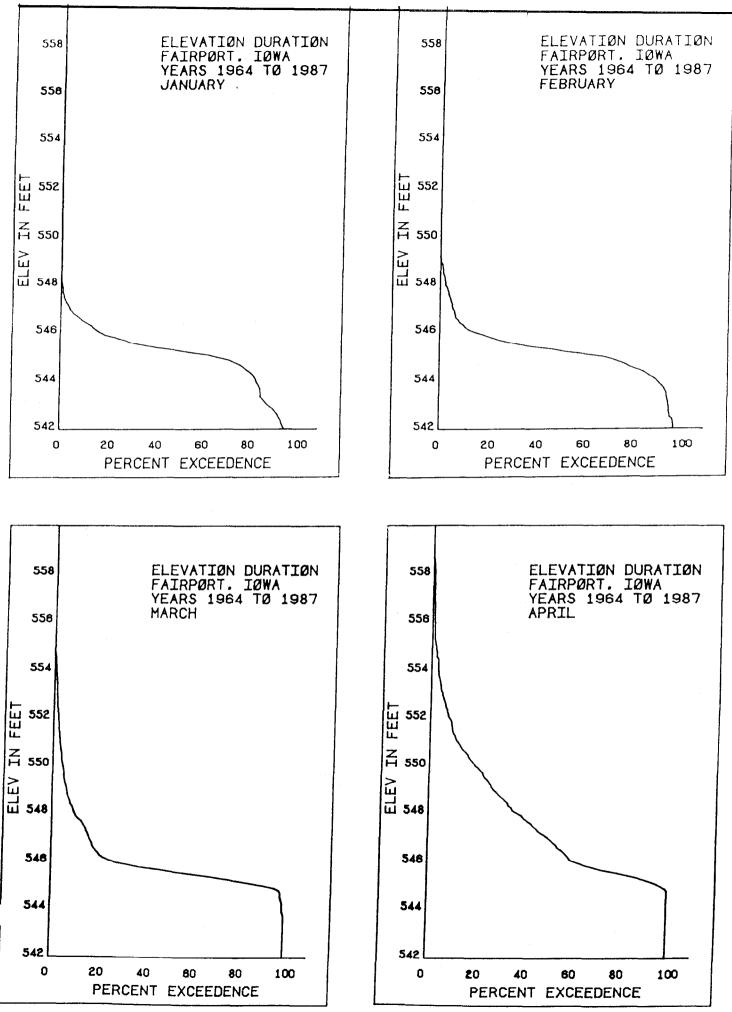
ł


The drainage ditch shown on plate 8 of the main report was diverted because of the objective of reducing upland erosion sedimentation from entering the project site. The ditch has a 1.8-square-mile drainage area and was designed for a discharge of 340 cubic feet per second, which is approximately the 2-year frequency flood and is consistent with the existing ditch capacity. The ditch cross section should have a 30-foot bottom width and 3:1 side slopes. A profile slope of .0025 ft./ft. was designed to match existing profile conditions as close as possible, as shown on plate 16 of the main report. A design flood will result in an average velocity of approximately 3 feet per second.

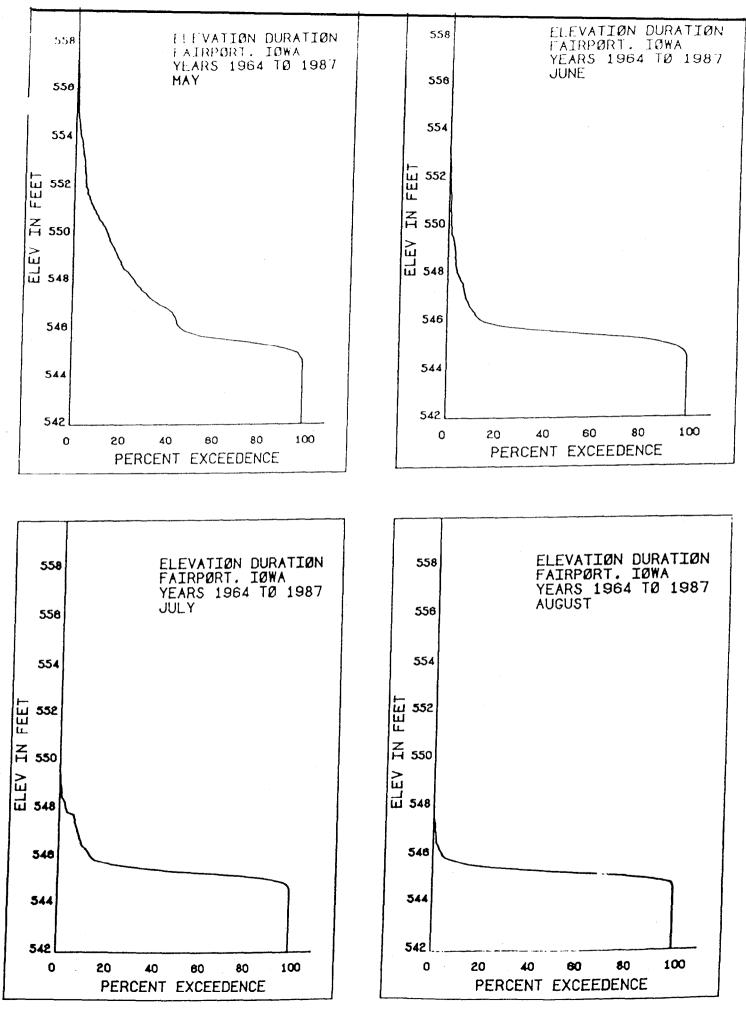

NAME OF A H H GEN NYD RA VACING BUYAC 125 OLLICE OLLICE 5, 10, 50, 100, STANDARD RIVER -MILES ROCK ISLAND UPPER MISSISSIPPI RIVER ENGINEERS, U. S. ARMI 7 THE DISTRICT ENGINEER OX NELVID. SLUNDS 514.52 200. FLOOD PROFILES PLATE • 500 10 DISTRICT YEAR FLOOD 463.5 A-2

1

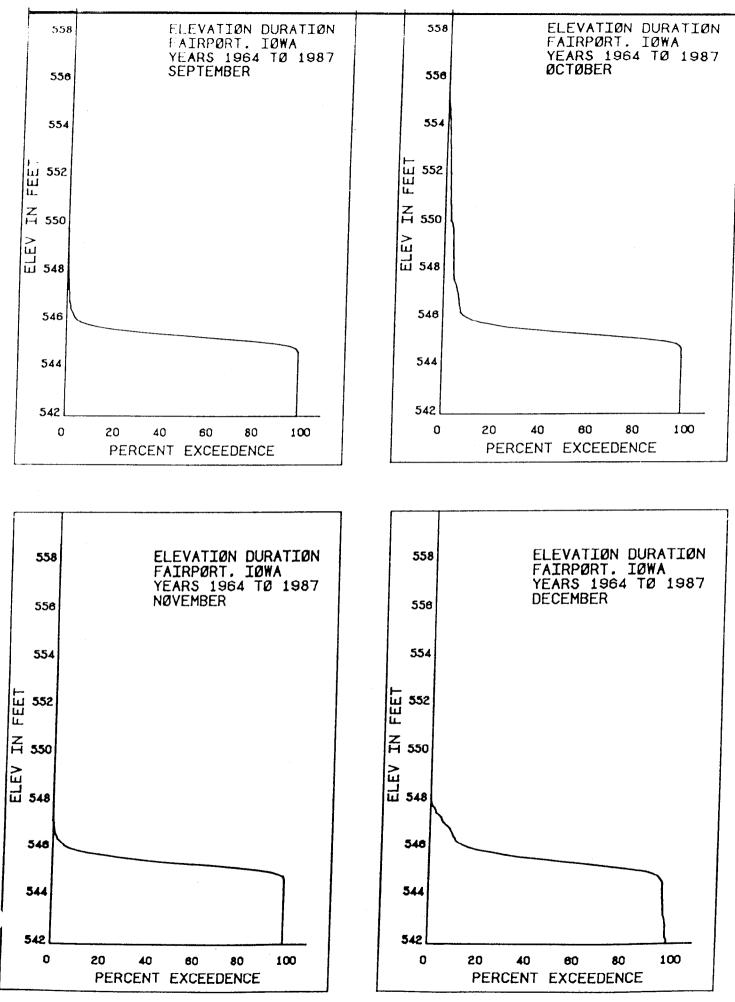
DISTANCE IN MILES ABOVE OHIO RIVER


ELEVATION IN FEET (M.S.L.)

•)


)

}



۱

PLATE A-4

1

ī

PLATE A-6

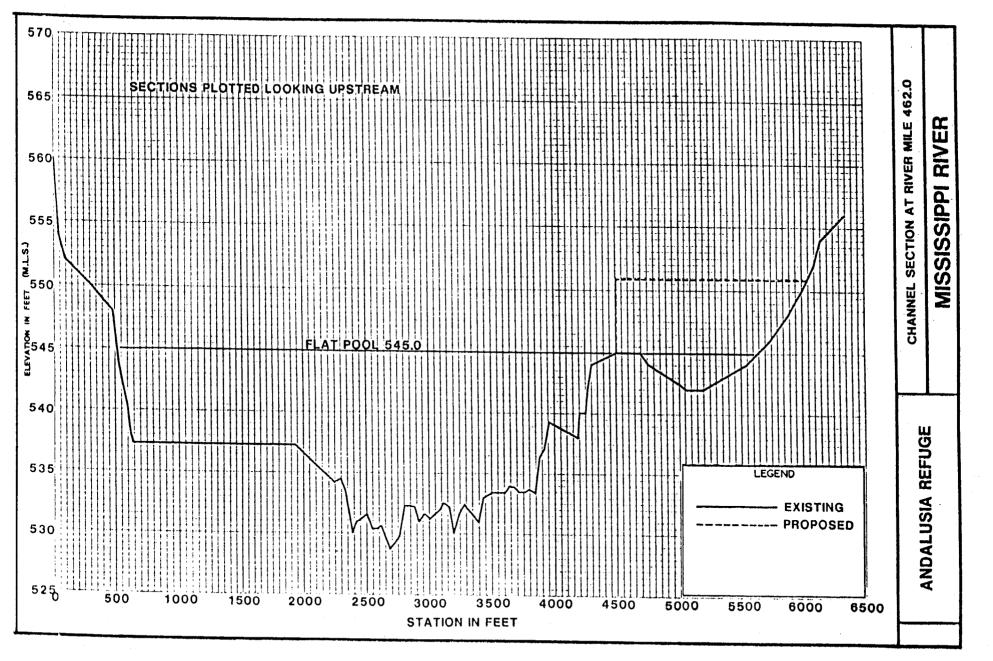


PLATE A-7

WATER QUALITY

۱.

Ľ

È

A

Ρ

P

Ē

N

D

Ι

X

B

UPPER MISSISSIPPI RIVER SYSTEM ENVIRONMENTAL MANAGEMENT PROGRAM DEFINITE PROJECT REPORT (R-4)

ANDALUSIA REFUGE REHABILITATION AND ENHANCEMENT

POOL 16, MISSISSIPPI RIVER MILES 462 THROUGH 463 ROCK ISLAND COUNTY, ILLINOIS

APPENDIX B WATER QUALITY

OVERVIEW

Several water quality related factors bear on the suitabliity of the backwater complex to support valuable aquatic and semiaquatic species. These include the chemical composition of the water, the chemical and physical composition of the sediment, and the depth and availability of water throughout the year. Representatives of the Iowa Department of Natural Resources (DNR) indicated that water quality within Andalusia Slough is currently adequate to support the native fisheries during the summer months. However, under ice cover, conditions develop which result in periods where dissolved oxygen (D.O.) becomes depleted to the point where fish kills can occur. In fact, fish kills have been observed on several occasions during the early spring immediately after ice out. Although it is not known with certainty that the cause of these fish kills is low D.O., it is reasonable to assume that it is at least a contributing factor. As the entire backwater area is heavily laden with aquatic vascular plants during the summer months, it is easy to envision the decomposition of this organic material during the winter leading to low D.O. levels.

In order to assess the existing water quality situation and predict the impacts of any enhancement efforts, a monitoring program was initiated in 1987. Water samples were taken every 2 weeks during the summer and less frequently during the remainder of the year. In addition, sediment and elutriate samples were collected. These data provide the basis for the assessment of water quality within the study area.

METHODS

Ambient water samples were collected on eight occasions between January and September 1987. An attempt to collect samples was made on two other occasions, however, insufficient water depth existed to permit taking representative samples. On January 28, 1987, samples were taken from the ice at locations R2 and R3

shown on plate 23 of the main report. On seven occasions, samples were taken from boat at the single location Al shown on plate 23. Due to the shallow water and abundant aquatic plant growth, it was not possible to collect samples during the summer from the immediate project area. The location selected was as close to the project site as water conditions would allow. Due to the lack of significant flow through the backwater area and the relative proximity of the winter and summer sampling locations, it is quite likely that little, if any, difference in water quality exists between the sampling sites. In all cases, grab samples were taken from immediately below the surface using a Kemmerer sampler. Field analyses (temperature, pH, D.O., specific conductance and secchi disk depth) were performed immediately, while the samples requiring laboratory analysis were appropriately preserved, placed on ice, and shipped the same day they were collected.

Sediment and elutriate samples were taken at six locations on August 12, 1988. The locations are shown on plate 23 and coincide quite closely with the locations of the surface samples collected on January 28, 1987. Locations R1 - R3 were taken using a 48-inch coring device. The resulting cores were between 24 and 36 inches in length. At locations L1 - L3, no water was present and the soil was quite dry and compacted. Samples at these locations were taken using a shovel and were from the upper 1 to 2 feet of the soil. All water samples taken for the purpose of preparing the elutriate samples were collected and handled in the manner described above. All sediment samples were placed on ice and shipped to the laboratory the same day they were collected.

Grain size analyses were performed in accordance with U.S. Army Corps of Engineers, Engineer Manual 1110-2-1906, Appendix V, November 1970. Chemical analyses were performed according to "Standard Methods for the Examination of Water and Wastewater," 16th Edition, American Public Health Association, Washington, D.C., 1985. Elutriate samples were prepared by mixing 1 part sediment with 4 parts ambient water, shaking for 30 minutes, and allowing 4 hours to settle.

RESULTS

Results of all field and laboratory analyses are presented in tables B-1 through B-4. Table B-1 lists the results of grain size analyses of samples collected on June 21, 1988. It is apparent from the results that the sediment is very fine throughout the backwater area. For a complete hydrometer analysis, see appendix C. Table B-2 lists the results of all laboratory and field tests performed on ambient water samples. From the results it can be seen that D.O. concentrations are low during several weeks of the observation period. While levels do not fall below 4.0 mg/l, they approach this level and probably do fall below this level during the night. The chlorophyll concentrations indicate that phytoplankton are quite abundant at certain times and probably contribute to fluctuations in D.O. concentrations.

Even though samples were taken some distance from the actual project location due to access problems, water depth was still quite shallow and was barely adequate to permit reaching this point by boat. This was true despite the fact that the river was at or above flat pool each day that samples were collected.

Table B-3 lists the results of bulk sediment analyses performed on samples collected on August 12, 1988. As can be seen from the data, all inorganic contaminants except total volatile solids fell in the range considered to be nonpolluted based on EPA's draft criteria for Great Lakes sediment. Total volatile solids undoubtedly exceeded the criteria due to the large amount of detritus present in the sediments. There is no evidence of large concentrations of soluble organic contaminants as seen from the fact that all pesticide concentrations were below the detection limits.

Table B-4 lists the results of elutriate analyses performed on samples collected on August 12, 1988. As can be seen from the data, concentrations of most parameters were quite low. The only exception to this is ammonia nitrogen. Concentrations were observed which exceeded the general water quality standards at two locations. All pesticide concentrations were below the detection limits.

CONCLUSIONS

Based on field observations and analytical results, water quality within the project area appears adequate to support aquatic life during the majority of the time. During the summer there may be periods when D.O. approaches levels considered to be detrimental to certain fish species. This was observed during the study period, although no fish kills were observed. During the winter there may be ice and snow conditions, which, in combination with decayed organic matter, could develop into a "winter kill." Although this was not observed during the study period, it has been reported by DNR personnel. Results from the analyses of sediment and elutriate samples show no excessive concentrations of contaminants as compared with interim EPA criteria for Great Lakes Sediment and the State water quality standards, with the exception of ammonia nitrogen. Concentrations of this parameter should be viewed in light of the proposed mixing zone, and, if necessary, toxic effects can be minimized by coordinating construction with those periods when water temperature and pH are low.

<u>Grain Size Analyses</u>

Location	Percentage Passing a #230 Sieve (<0.062um)
1L	98.2
1R	99.7
2L	93.6
2R	98.2
3R	83.6
3L	82.5

Ambient Water Quality Results, 1987

	1/28	1/28	6/8	6/22	<u>Dat</u> 7/6		8/10	8/24	9/8	9/21
Parameter	R3	R2	A1	A1	Locat A1		A1	A1	A1	A1
Time	1030	1045	1030	1020	1025	0925	1055	1055	1025	1205
Ice Thickness (cm)	12.5	12.5	-	-	-	-	-	-	-	-
Water Temp. (C) Depth (M)	-				26.7			20.0	21.7	15.6
D.O. $(mg/1)$.3 15.4	.5	.9 6.9	.8 4.3	.7 5.7	.6	.6	.7	.8	.7
pH (units)	-	-	7.6	7.2	7.2	6.6 7.6	4.4	4.7	4.5 7.0	4.9 7.2
Sp. Cond. (umhos/cm)	-	-	436	472	408	381	410	381	475	369
Secchi Depth (M)	-	-	1.5	2.0	2.0	2.0	2.0	2.0	2.5	2.0
Sus. Solids (mg/l) Chl. a (mg/cu m)	_	-	24	15	10	9	4	3	4	3
Chl. b (mg/cu m)	_	_	46 2	12 2	14 2	6 2	7	10	8	5
Chl. c (mg/cu m)	_	-	4	2	2	2	2	2 2	1	⊥ 1
Pheo. a (mg/cu m)	-	-	18	13	6	8	4	4	4	2

- - - -

Bulk Sediment Analyses, August 12, 1988 (mg/kg)

Parameter

Location

	R1		R2		R3		L1		L2		L3	
Arsenic (Total)	2.0		2.7		1.8		2.7		4.0		2.9	
Barium (Total)	74		67		62		98		88		94	
Cadmium (Total)	<0.87		<0.69		<0.82		<0.79		<0.79		<0.68	
Chromium (Total)	12		13		12		17		19		13	
Copper (Total)	11		11		11		16		17		15	
Lead (Total)	6.3		6.3		5.2		17		17		15	
Mercury (Total)	<0.019		<0.027		<0.025		<0.031		<0.026		<0.026	
Nickel (Total)	15		12		11		20		25		18	
Selenium (Total)	<0.87		<0.69		<0.83		<0.79		<0.79		<0.68	
Zinc (Total)	67		64		63		91		94		78	
Ammonia-N	120		82		89		41^{-1}		41		37	
Total Organic Carbon	7.5%		6.9%		7.7%		8.2%		8.3%		7.9%	
Oil and Grease	50		190		190		110		250		360	
Total Volatile Solids	s 93 0 0		19500		13200		12600		4200		13300	
Aldrin	<8.0	*	<8.0	*	<8.0	*		*	<8.0	*	<8.0	*
Chlordane	<80	*	<80	*	<80	*	<80	*	<80	*	<80	*
DDD	<16	*	<16	*	<16	*	<16	*	<16	*	<16	*
DDE	<16	*	<16	*	<16	*	<16	*	<16	*	<16	*
DDT	<16	*	<16	*	<16	*	<16	*	<16	*	<16	*
Dieldrin	<16	*	<16	*	<16	*	<16	*	<16	*	<16	*
Endrin	<16	*	<16	*	<16	*	<16	*	<16	*	<16	*
Heptachlor	<8.0	*	<8.0	*	<8.0	*	<8.0	*	<8.0	*	<8.0	*
Hepachlor Epoxide	<8.0	*	<8.0	*	<8.0	*	<8.0	*	<8.0	*	<8.0	*
Lindane	<8.0	*	<8.0	*	<8.0	*	<8.0	*	<8.0	*	<8.0	*
Methoxychlor	<80	*	<80	*	<80	*	<80	*	<80	*	< 80	*
Toxaphene	<160	*	<160	*	<160	*	<160	*	<160	*	<160	*
2,4-D	_	*	_	*	_	*		*		*		*
2,4,5-TP		*	_	*	_	*		*	_	*	-	*
Total PCB's	<160	*	<160	*	<160	*	<16 <u>0</u>	*	<160	*	<160	*

* ug/kg

-

Elutriate Results from August 2, 1988, Sampling (mg/l)

Parameter			Locatio	<u>n</u>			Ambient <u>Water</u>
	L1	L2	L3	R1	R2	R3	R2
Arsenic	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.012
Barium	0.07	0.08	0.08	0.01	0.09	0.10	0.07
Cadmium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chromium	<0.009	<0.009	<0.009	0.01	<0.009	<0.009	0.03
Copper	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009
Lead	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Mercury	<0.0001	<0.0001	<0.0001	<0.0001	<0.0002		
Nickel	<0.025	<0.025	0.03	0.12	0.06	0.03	0.03
Selenium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc	0.03	0.09	0.11	0.11	0.09	0.11	0.04
Ammonia-N	4.2	2.4	2.9	15	18	0.13	0.13
Total Vol Solids	530	450	420	580	640	420	300
Oil and Grease	4.0	16	6.0	<2.0	32	<2.0	-
TOC	48	47	16	1100	50	42	13
Aldrin*	<0.10	<0.10	<0.15	<0.10	<0.10	<0.05	<0.05
Chlordane*	<1.0	<1.0	<1.5	<1.0	<1.0	<0.50	<0.50
DDD*	<0.20	<0.20	<0.30	<0.20	<0.20	<0.10	<0.10
DDE*	<0.20	<0.20	<0.30	<0.20	<0.20	<0.10	<0.10
DDT*	<0.20	<0.20	<0.30	<0.20	<0.20	<0.10	<0.10
Dieldrin*	<0.20	<0.20	<0.30	<0.20	<0.20	<0.10	<0.10
Endrin*	<0.20	<0.20	<0.30	<0.20	<0.20	<0.10	<0.10
Heptachlor*	<0.10	<0.10	<0.15	<0.10	<0.10	<0.05	<0.05
Heptachlor Epoxide*		<0.10	<0.15	<0.10	<0.10	<0.05	<0.05
Lindane*	<0.10	<0.10	<0.15	<0.10	<0.10	<0.05	<0.05
Methoxychlor*	<1.0	<1.0	<1.5	<1.0	<1.0	<0.50	<0.50
Toxaphene*	<2.0	<2.0	<3.0	<2.0	<2.0	<1.0	<1.0
2,4-D*				2.0	12.0		11.0
2,4,5-TP*	-	-	-			-	-
Total PCB's*	<2.0	<2.0	<3.0	<2.0	<2.0	<1.0	<1.0

* Concentrations of all organics are expressed as ug/l.

GEOTECHNICAL CONSIDERATIONS

)

¥.

÷Λ

Ρ

P

E

N

D

T

X

С

UPPER MISSISSIPPI RIVER ENVIRONMENTAL MANAGEMENT PROGRAM DEFINITE PROJECT REPORT

ANDALUSIA REFUGE REHABILITATION AND ENHANCEMENT POOL 16 MISSISSIPPI RIVER MILES 462 THROUGH 463 ROCK ISLAND COUNTY, ILLINOIS

APPENDIX C GEOTECHNICAL CONSIDERATIONS

TABLE OF CONTENTS

Subject

Location Physiography Bedrock Pleistocene and Recent Deposits Subsurface Explorations Perimeter Levee Embankment Foundation for Embankments Foundation for Other Structures Groundwater Subsurface Conditions at Excavation Sites Slope Stability Underseepage Settlement Borrow Material

List of Plates

No.			
C-1		. •	
- C - E -	-	C-	-3
C-4	.	C-	-7

Slope Stability Analysis

Title

Settlement Analysis Hydrometer Analysis

Page

C-1

C-1

C-1

Ć-2

C-2

C-3

C-4

C-4

C-5

C-5 C-6

C-6

C-7

C-7

LOCATION

The Andalusia EMP Project is situated within the Upper Mississippi Wildlife and Fish Refuge, between river mile 462 and 463. The site is bordered by Dead Slough directly to the north, forested loess-covered bluffs to the south, which are part of 393 acres managed by the State of Illinois, Department of Conservation. The major part of Andalusia Slough continues to the east; and Drury Slough to the west. The project area lies within the Galesberg Plain section of the Central Lowlands Province.

PHYSIOGRAPHY

The topography within the project site consists of a series of sloughs and shallow backwater lakes. Site elevation varies from 546-548 feet MSL (Mean Sea Level). Land surface configuration was originally controlled by the shape of the underlying bedrock surface. The Mississippi River valley is constricted from Andalusia to Muscatine with little or no flood plain. At the point of the project site, the valley is only about 1-1/4 miles wide. The area is known as the lower part of the "upper narrows" (Savage 1921). This narrowing is caused by the unusual thickness of Pennsylvanian age sandstone which the river runs across. On the valley walls, the erosional slopes are concealed by a mantle of unconsolidated material derived from slumping and landslides over underlying Pennsylvanian age shales.

The presence of more resistant bedrock is indicated by the steep lower slopes of the valley bedrock. Maximum relief of valley sides adjacent to the project site is 100-150 feet (Horberg 1956b).

BEDROCK

The bedrock of the project area consists of Pennsylvanian age sandstones, shales, and coals, setting unconformably on top of Devonian age shale and limestones (Fitzgerald 1985). Middle Devonian age limestones outcrop 10 miles upstream in Buffalo, Iowa and in the near by town of Andalusia, Illinois. These rocks are almost horizontal and in general slope toward the southwest at an average rate of 10 feet per mile. Overall the Devonian age rocks are about 140 feet thick. There is a Middle Devonian age shale lying directly beneath a thick section of Pennsylvanian age rocks at Wyoming Hill, and outcrop about a mile downstream from the project site on the Iowa side of the river. Overall the Pennsylvanian age rocks are up to 150 feet thick; but at Wyoming Hill, along highway 22, NE 1/4, Sec. 34, T77N, RIW, (Horberg 1956b), the outcrop is about 100 feet thick, and consists of sandstones shales, and coals.

PLEISTOCENE AND RECENT DEPOSITS

Above, and to some extent within the Mississippi River, and tributary valleys are deposits of Pleistocene drift or till, loess, terrace deposits, recent alluvium, and dune deposits. Maximum thickness of these deposits do not exceed 100 feet around project area (Savage 1921) (Horberg 1956b). Pleistocene deposits resulted from the numerous advances and retreats of glaciers which blanketed this entire area. A road cut 4 miles upstream from the project site at Loud Thunder Forest Preserve, SW 1/4, SE 1/4, Sec. 27, TT7N, R4W, exposes 43 feet of Pleistocene sediments. The outcrop includes 23 feet of Pre-Illinoian age tills, 8 feet of Illinoian age tills, and 12 feet of Wisconsinan age, Peorian loess (Horberg 1956b).

In the Mississippi River valley at the mouth of the adjacent watersheds, the sediments consists of alluvial deposits. These alluvial deposits are unconsolidated glacial outwash sands and gravels on bedrock, with deposits of alluvial silts and clays on top. The outwash sands and gravels are of the Henry formation of Wisconsinan age, overlain by Cahokia alluvial silts and clays, Wisconsinan or Holocene in age (Willman 1970). Thicknesses of alluvial deposits along the Mississippi River from Le Claire, Iowa to Muscatine, Iowa usually varies from 15 to 45 feet (Savage 1921). At the project site, borings were drilled no futher than 30.5 feet and bedrock was not encountered.

SUBSURFACE EXPLORATIONS

Access to the project site was limited by surface water. During February 1987, eight primary borings A-87-1 through A-87-8 were taken. Borings A-87-1, 2, 5, 6, and 7 were obtained by hand with a 4-inch Iwan Auger. Borings A-87-3, 4, and 8 were obtained with a CME-45 drill rig using a 5-inch hallow stem auger.

During January and February 1988, fourteen additional exploratory borings were taken. These numbered A-88-1 through A-88-14. Holes A-88-6 and A-88-8 were obtained by using 4-inch Iwan hand auger. The other holes were obtained using CME-45 drill rig. Locations of the borings and boring logs are show on plate 2 of the main report. The deepest boring taken with the drilling rig extended to a depth of 30.5 feet, approximate elevation 517.8 feet MSL.

PERIMETER LEVEE EMBANKMENT

The proposed perimeter levee as shown on plate 2 of the main report, is approximately 6 feet high, and approximately 8,600 feet long. The purpose of the levee is to create a moist soil management unit with controlled water levels for wildlife habitat on the landside of the levee. The crown of the levee will be at least 12 feet wide for ease of construction and normal maintenance and The side slopes of the levee will be 1 vertical (V) operation. on 4 horizontal (H). From station 12+00 to 8+00 CE, the proposed levee will be wider (60-foot wide) compared to other reaches of This portion of the levee will be built with clay the levee. borrowed from the Dead Slough excavation. The majority of the excavated material from Dead Slough will be placed in the adjacent levee as a thicker, instead of transporting it to a disposal site. The typical cross sections of the proposed levee are shown on plate 18 of the main report.

From station 12+21 C to station 25+18+CE, the side slopes of the levee will be grass seeded since a heavy timber growth is evident on both sides of the proposed levee. Therefore, it is anticipated that grass protection will be adequate against wave wash. From stations 25+18+CE to 29+18+CE, the profile of the levee will be placed on a steeper gradient than the natural river flood profile to ensure overtopping occurs from the downstream end. Therefore, both side slopes of the levee will be protected against the wave wash and current action by an 18-inch thickness of riprap with the following gradation:

Percent Lighter by Weight	<u>Weight of Stone in Pounds</u>
100	150-400
50	60-170
15	15- 50

A similar gradation used on various similar installations has served satisfactorily for several years. A bedding layer of 6inch thickness will be of the following gradation:

<u>U.S.</u> <u>Standard</u> <u>Sieve</u> <u>Size</u>	Percentage Passing (By Weight)
1 - 1/2	85 - 100
3/4	40 - 85
3/8	15 - 45
No. 4	0 - 20
No. 8	0 - 5

The entire levee will be built with uncompacted impervious material lie, (ie, fill place by casting).

C-3

FOUNDATION FOR EMBANKMENTS

The entire foundation beneath the proposed levee embankment will be stripped of vegetation and other deleterious materials to a depth of 6 inches. All top roots, lateral roots, and trees within the embankment foundation areas will be removed to a depth of 3 feet below natural ground surface.

An extensive field investigation was made to ascertain the proposed levee foundation conditions. According to borings which were pertinent to approximately 6 feet high perimeter levee foundation analyses, the foundation material consists of alluvial deposits. Boring logs are shown on plate 7 of the main report. The top stratum varies in thickness from 16 to 20 feet, and consists of normally consolidated impervious alluvial deposits (SC, CL, CL-CH, and CH). The moisture content ranges from 24 to 37 percent for CL soils, 27 to 35 for CL-CH soils, and 29 to 48 for CH soils. Borings A-88-8, A-88-9, and A-88-14 show that the top 1-foot consists of slightly organic clay with moisture content of 85 percent.

The Atterberg limits testing was performed on the selected soil samples after throughly evaluating each soil sample. Atterberg limits testing reveals a range from 44/16 (liquid limit/plastic limit) to 44/18 for CL soils, 55/21 to 58/22 for CL-CH soils, and 71/28 to 82/29 for CH soils. The standard penetration test "N" values recorded during the drilling operations for top stratum ranged from 2 to 9 blow counts, with average "N" values of 6. The shear strength of the top stratum based on standard penetration tests varies from 250 psf to 1,125 psf with an average of 750 psf. The pocket penetrometer tests were also run on the selected clay samples. The pocket penetrometer tests indicate a range in cohension from 250 to 1250 psf.

The soils below the impervious substratum are found to be medium to fine sand (SP). The "N" values obtained for the sand ranged from 4 to 23, with average "N" values of 11. Detailed descriptions of the encountered materials are shown on boring logs, on plate 7 of the main report. None of these borings were extended to bedrock.

FOUNDATION FOR OTHER STRUCTURES

A water control structure near station 21+00 will be built as a part of the proposed project. The location of the proposed structure is shown on plate 2 of the main report. Boring A-88-3, 32 feet deep was taken to evaluate physical characteristic of subsurface conditions. Detailed descriptions of soils encountered are shown on boring logs, see plate 7 of the main report. The boring does not show undesirable or soft material. The unsuitable material which might not have been encountered by this boring will be replaced with appropriate fill. The replacement material will be placed and compacted to obtain a density equal to the adjacent undisturbed foundation. A dewatering system will be required to maintain the excavation area in dry condition. Foundation design details of the proposed structures are given in Appendix D.

Borings have not been completed due to site change location of pump plant. Therefore, two additional borings will be taken prior to final design to determine engineering properties of the soils underlying the pump station foundation.

GROUNDWATER

1

•

Water level observations were monitored during the boring operations and are noted on the boring log as shown on plate 7 of the main report. Based on these observations the ground water levels encountered in the vicinity of the proposed embankment area approximately from station 4+00 to 21+50 were found to be fairly consistant from hole to hole. The depth at which water was located ranged from 2 to 3 feet; from elevations 544.5 to 545.5 feet MSL. From approximately stations 21+50CE to 31+00CE (end of the levee) the ground water was found to be .2 to 1 foot above the ground surface; from elevations 545 to 546 feet MSL. The water levels should be expected to fluctuate with changes in climatic conditions and river levels.

SUBSURFACE CONDITIONS AT EXCAVATION SITES

<u>REFUGE DREDGING/DITCHING</u>. Refuge excavation/ditching is proposed as shown on plate 18 of the main report. The site indicates removal of 2 to 4 feet of soils, which will have a width of 50 feet. Borings A-87-4, A-88-2, and A-88-13 were taken to identify the subsurface conditions and the engineering characteristics of the encountered material at the proposed site.

Borings revealed the presence of about 4 feet of very soft clay (CH-OH, CL, CH). The moisture content varied from 43% to 71%. This is underlain by medium clay (CL-CH). The moisture content varied from 32% to 37%. A detailed description of the encountered material is shown in the logs of soil borings on plate 7 of the main report. DEAD SLOUGH EXCAVATION. Dead slough site will be located approximately 40 feet from riverside toe of the proposed levee as shown on plate 18 of the main report. The site indicates the need for removal of 6 to 9 feet of soils, which will have a width of 60 feet. Borings A-88-10 and A-88-11 were considered pertinent taken to determine the various soil profile components and the engineering characteristics of the material for dredging the dead slough. A typical soil profile of this site consists of very soft clay. The average water content was 98 percent, with a range of 98 to 107 percent. A detailed description of the encountered materials is shown on the logs of soil borings on plate 7 of the main report.

SLOPE STABILITY

The proposed levee near station 28+50 CE is found to be most critical for slope stability analysis for end of construction condition. The stability of slopes was analyzed by the Modified Swedish Method for a circular Arc Slope Stability Analysis in accordance with EM 1110-2-1902, "Engineering Design Stability of Earth and Rockfill Dams," dated 1 April 1970.

A sudden drawdown and steady seepage conditions were not evaluated since high water levels will be of such short duration that saturation of uncompacted impervious embankment cannot occur and the Mississippi River low water level will not impose any seepage pressure on the levee.

A range of extremely conservative shear strengths (Q) was assumed for the most severe configuration of embankment and foundation, to estimate the stability of the embankment. These values are shown on plate C-1 and are based on tests and samples from other projects with generally similar soils and construction. Successive trails of various sliding surfaces were analyzed and determination of the critical failure arc having the lowest safety factor was made. The summary of the slope stability analysis and the solution of the most critical arc appears on plate C-1. The computed minimum, safety factor of 2.3 for end of construction condition exceed the 1.3 required by EM 1110-2-1913, "Design and Construction of Levees," dated March 31, 1978. Therefore, no slope stability problems are expected.

UNDERSEEPAGE

The underseepage analyses for the proposed is based on a thorough study of thickness and permeability, engineering characteristics of the impervious stratum and the pervious substratum, in addition to the extent of the riverward and landward top strata. Case 2 (EM 1110-2-1913)-Impervious Top Stratum Both Riverside and Landside was considered appropriate since 15- to 20-foot thick top stratum appears to exist on the both sides of the approximately 6 feet high levee, and continuing infinitely on the landward side. For such a condition seepage will not occur through the landside top stratum; therefore, underseepage and berm analyses were not made.

SETTLEMENT

.)

÷

1

)

)

1

•

The proposed levee, from approximately station 23+00CE to 30+18CE is found to be most critical with respect to settlement. A study at station 28+50 was selected for analysis, where the levee is approximately 7 feet high.

The foundation, in this reach of the levee consists of a 1-to 2foot thick layer of very soft organic clay. The soil below the soft clay consists of clay of a higher shear strength and a low compressibility. It is anticipated that the very soft clay will be displaced during the construction of the levee by stronger fill material. Therefore, a 9-foot high levee is considered appropriate for the settlement analysis. The 9-foot high levee will impose a maximum load of 810 pounds per square foot on the 15-foot-thick alluvial clay top stratum foundation. A settlement analysis conforming to Joseph E. Bowles "Foundation Analysis and Design," 3rd edition, 1982, indicates total settlement to be on the order of 14 inches, as shown on plate C-3. In order to anticipate the unexpected settlement, a shrinkage allowance of 24 percent of the levee height will be provided in the specifications to allow for any consolidation of the embankment and settlement in the foundation.

BORROW MATERIAL

The borrow material will be removed from areas as shown on plate 18 of the main report. The source of the borrow site location was determined to be as close as adjacent to the levee toe. A 40-foot width berm will be left in place between the toe of the levee and near the edge of borrow site to ensure levee stability and to facilitate construction. According to borings which are pertinent to borrow areas, the borrow material consist of very wet soft clay, exceeding the liquid limit. The moisture content varies from 43 to 107 percent. Atterberg limits testing reveals a range from 71/28(liquid limit/plastic limit) to 82/29. These borrow areas are economically feasible source of material to construct the uncompacted levee. Because it involves a short or no haul distance and is conducive to dragline operation. Due to the soft nature of the borrow soils, care will be required in excavation and placement to insure the soils will stay in place on the slopes.

A dragline will be used to excavate and place the material. Excessive displacement of the excavated material should be expected due to very soft material of low strength and standing water. The material placement will require gentle laying of the excavated material from bottom to top to minimize the disturbance. The excavated material will be left inplace for a period until it regains strength. The excavated material will not be stockpiled higher than the height of the proposed embankment or the embankment will be constructed in multiple stages.

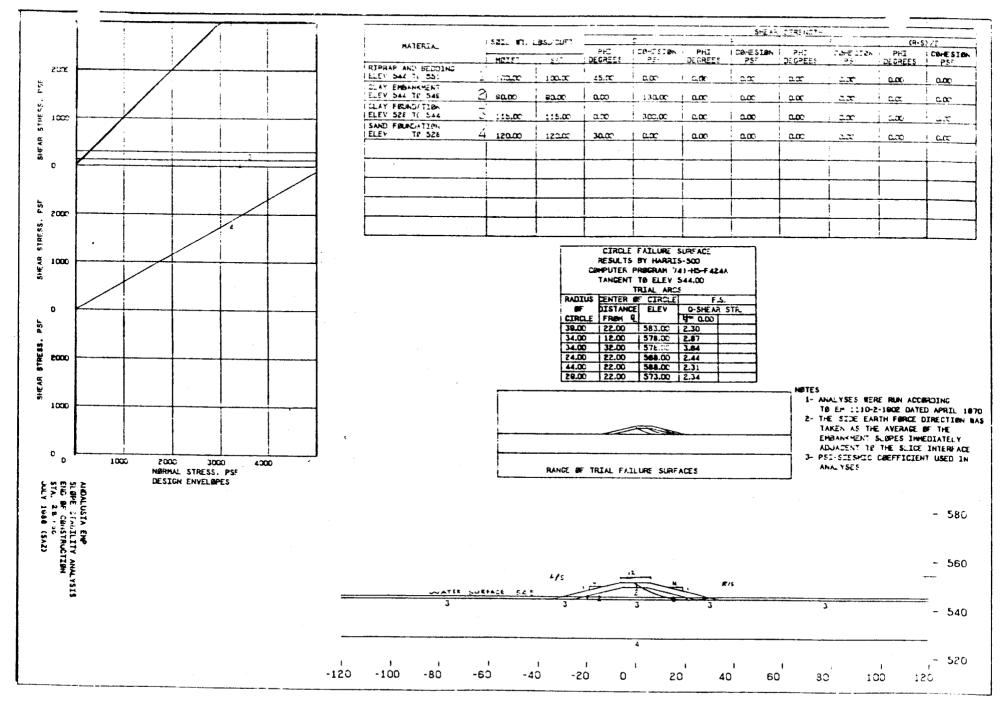
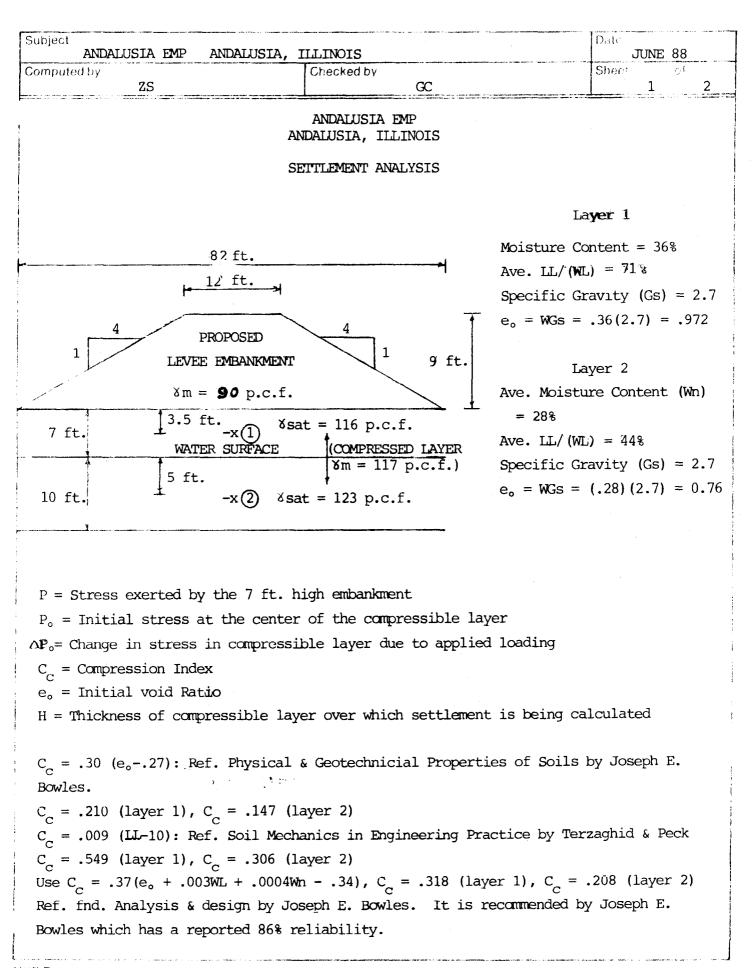
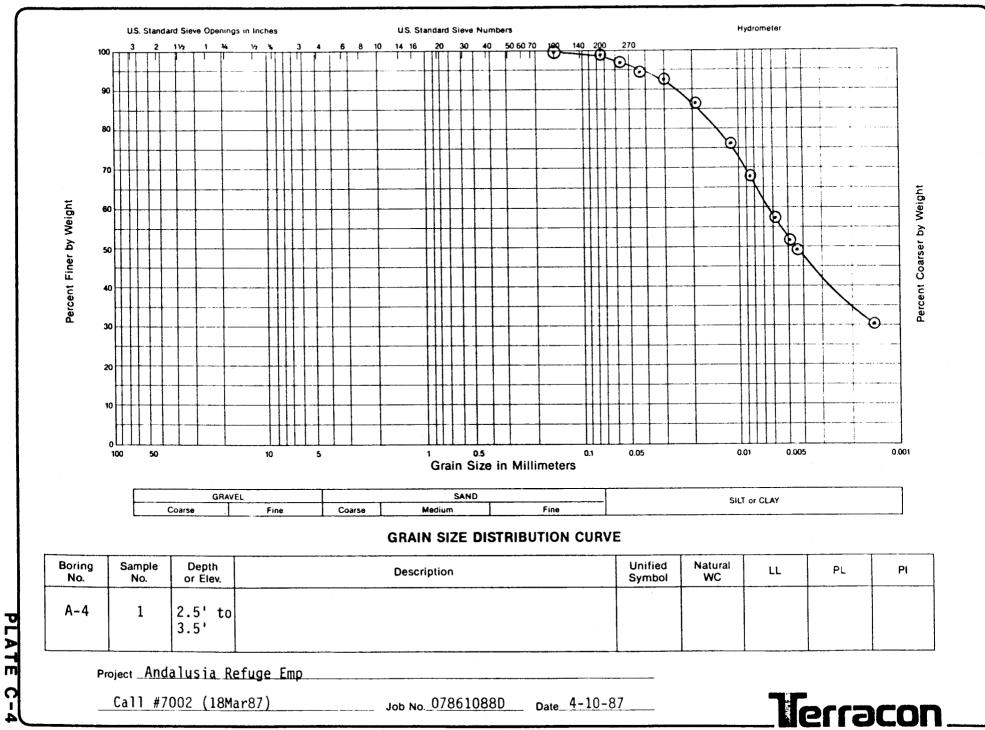



PLATE C-

.

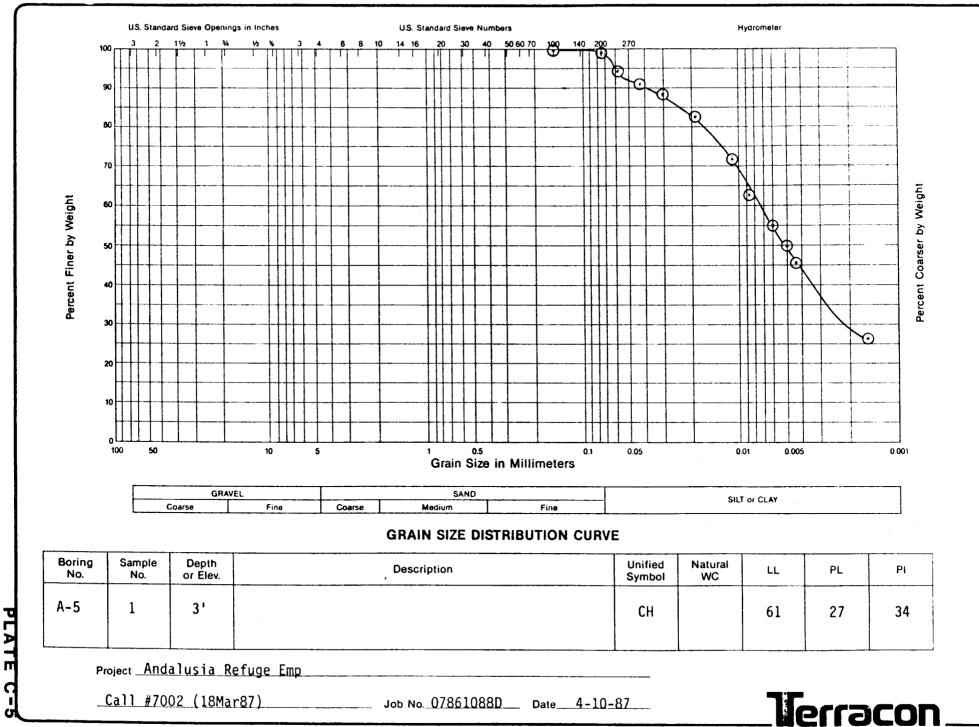
NCR Form 381b

PLATE C-2

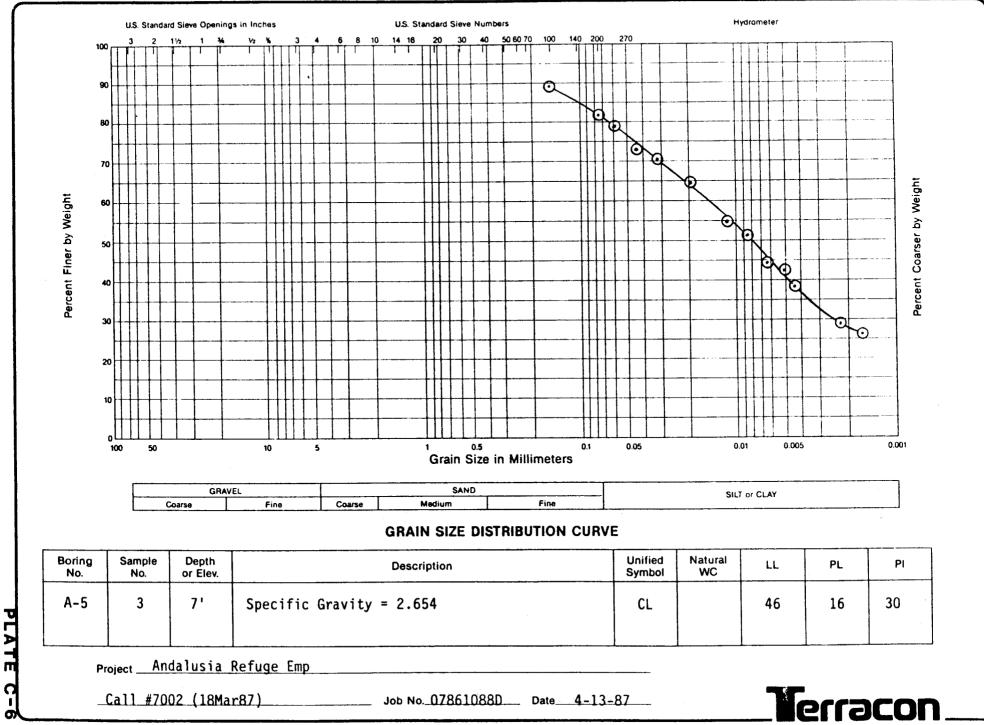

Subject		LUSIA EMP	- ANDAL	USIA, ILL	INOIS		Da	le JUNE	88
Computed b	v	SZ		Checked by	GC		Shi	००। 2	ot 2
								randitraanii taanii taanii taanii taa	anan katalogi ka sa mangangan katalogi Katalogi ka sa mangangan katalogi
P _o :									
-	mid	depth of lag	yer No.	1 = 3.5(1	16-62.4)	= 188	p.s.f.		
6 I	mid	depth of lay	yer No.	2 = 7(116	-62.4) +	5(123	- 62.4)	= 678	p.s.f
-				_ ,			L +		
° P		@ layer l		Boussines (.982)*(9					
		@ layer 2		Boussines	a coeffi	.cient *	h * m.		
				(.861)*(9	-				
	С		P	o + ^P o					
S = -	 	<u>с</u> ны ^е о	^{og} 10 -	P 0					
	Тт	e o		0					
		Depth	C _c	Po	^ P _o	Н	S]	
		(ft.)		(p.s.f.)		(ft.)	(ft.)		
		0 3.	5						
		7	.318	188	795	7	.81		
		17	.208	678	697	10	.36		

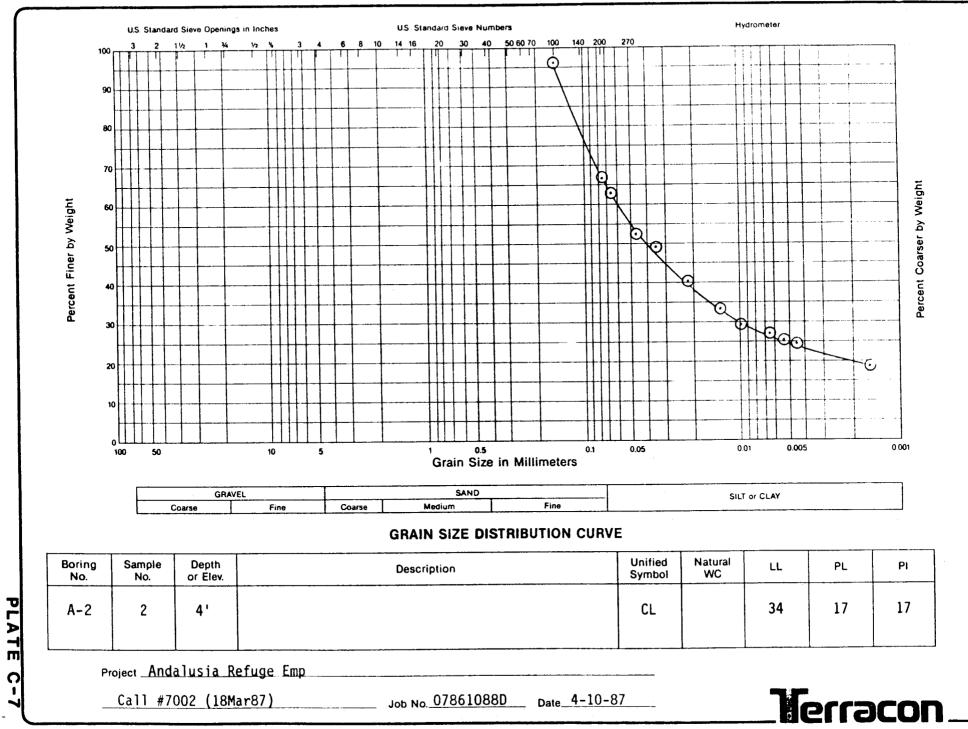
TOTAL SETTLEMENT = 1.2 ft. 14 inches

 $\log f \approx f + e$


 $\{e_{i}\}_{i=1}^{n}$

3694




- -

Form 124

Form 124

Form 124

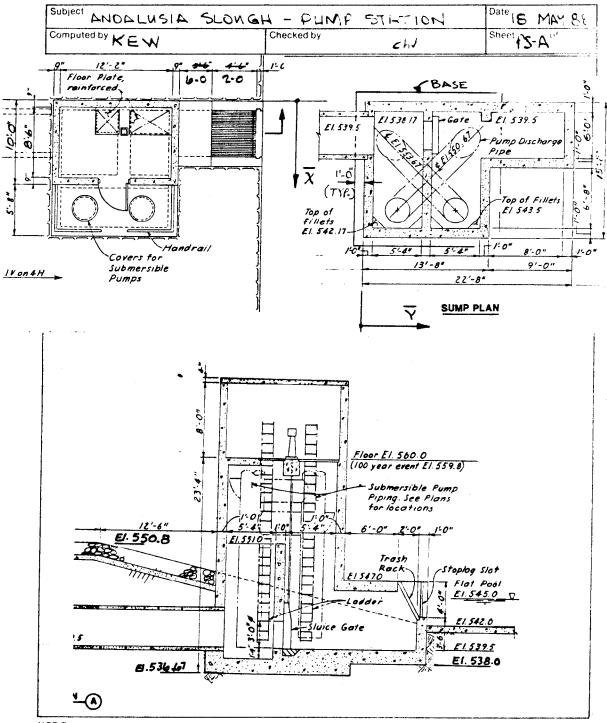
STRUCTURAL DESIGN

A

P

P

E


N

D

I

X

D

D-1

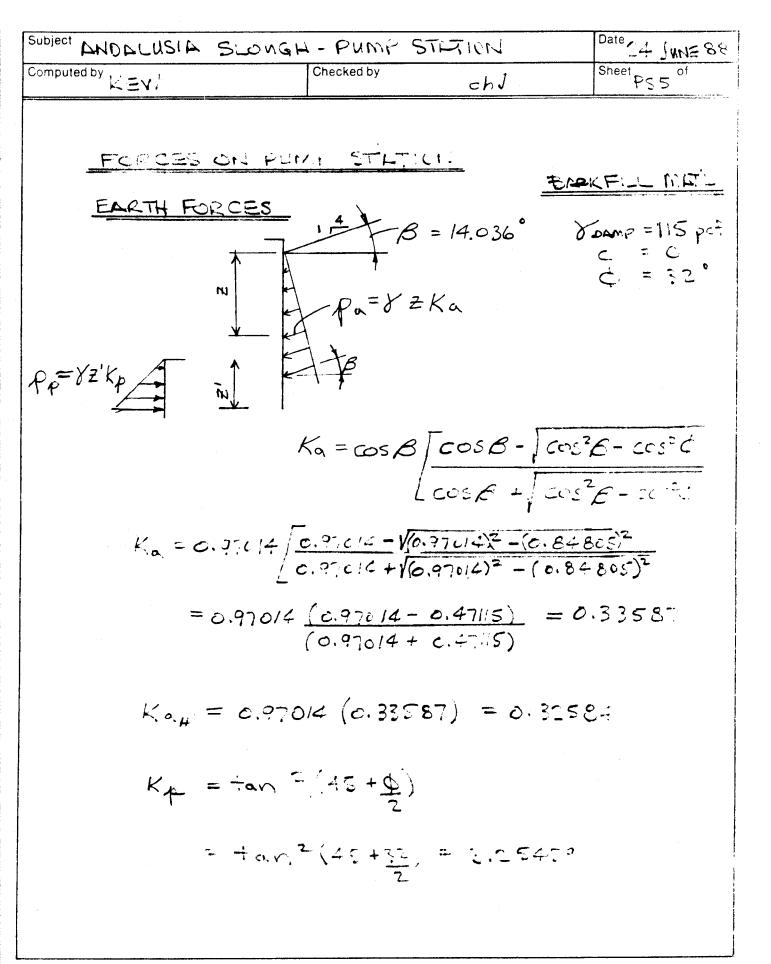
NGR Form 3815 1 Aug 81

1

1

)

)


) }

ANDALNSIA S	LONGH - PUMP STATI	
ed by KEW	$\frac{Checked by}{chJ}$	Sheet of PS 3
WEIGHT OF		++ /
ASSUME 14	PLATE FOR TUBES, W	$T_{T} = 10.2 \text{/} \text{FT}^2$
TUBE ID. =	32" ; PERIMETER	$=\pi(\mathbf{D})=\pi(32.2)$
		= 8.443 F= 2
VERT. TUBE	LENGTH	
INTAKE PU	mr = 5620 - 539 mr = 562.0539	5 - 1.33 = 21.17
CWILET PU		1.5
VERT. TUB	E WEIGHT	
INTAKE PI	imp = 10.2(8.42) imp = 10.2(8.42)	-3) 20.50) = 1,938
HORIZ, TUB INTAKE P	$\frac{12NGT1}{10.2}$ (8.443)	$(11.25) = 9.69^{+}$
	nmp = "	" = 969 [±]
WEIGHT OF	F PUMPS = 2, 870#	EDH (MANUE.)
WEIGHT C	DE HIO IN VERT. TU	BES
INTAKE F	$mp = \pi'(16)^{2}(21.17-1)$.04)(62.4) = 7,016
· · · · · -	$Pump = \pi (16)^2 (22.50)$	$-1041/1024 = 7479^{\pm}$
OUTLET	PUMP = AP(16) (22.56)	

1

NCR Form **381b**

ANDALUS	IA SLONGH -	-PUMP STATI		te 27 MAY 22
omputed by KEW	Check	edby chJ	Sh	eet PSZ of
			· ·	
WEIGH	T OF U.O.IN	HORIZ. TU	રહ્યુ	
				-#
INT	-аке Римр =	$= TT \frac{(16)^2}{144} (11.25)$	(62.4) =	3,921
		144	_	+ (CD 5
- CM	ILET PUMP			5,721
RForm				

Subject ANDALV. SIA 5'-	OV.GH - PUMPS	TATICN	Date Vri= EF
Computed by	Checked by	ch	Shect of FS 6
FURCES CI. F EARTH FORCI 1997 37.47 11 114 1114 1114		71	545.0 71.2 71 71 71 71 71 71 71 71 71 71 71 71 71
STLTION L WITHIN TH	THE REFUGE NO FLAT FOU E REFUGE IS E, ICE FURCES	- AND HIL RELAW TH	he top of
ont of t	STRTION IS IN NE MINN FLOW BE SUBJECT	N OF THE	L'VER. IT

Computed by KEYN			Date 13 MAY 88 Sheet PS7 of
STABILITY (Y)			EC 18 Out, Ba
LINIT	FURCE	ARM	MOMENT
Rave 0.33 (150) (10.00) (13.67)	6,835	6.833	46,704
WALLS 0.75 (150) (8.00) (13.67) -0.75 (150) (7.17) (3.33) 0.75 (150) (8.00) (8.50) 0.75 (150) (8.00) (8.50)	- 2,686) 7,650	0.375	168,133 - 18,353 2,869 101,684
FLOOR 0.50 (150) (13.67) (1.6 - 0.50 (150) (2.50) (2.5 - 0.50 (150) π (1.333) - 0.50 (150) π (1.333) ² - 0.50 (150) (2.5) 4.17	$\begin{array}{c} \bullet \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ 4 \\ 4$	6.833 5.917 3.667 10.000 10.583	81,755 - 2,775 - 1,536 - 4,190 - 8,276
BMS 0.50 (150) 8.00 (0.8 (RELOW SLAB) 1.33 (150)(11.67)(1.	3) 498 25) 2,910	7.833 6.833	3,901 19,884
WALLS $1.00 (150)(20.50)(15.)$ -1.00 (150)(7.00)(5.0)(15.0)(150)(150)(20.50)(15.0)(150)(20.50)(15.0)(150)(150)(150)(150)(150)(150)(150)(15	D) - 5,250 48,185 - 1,885 - 1,970 - 1,885 - 1,970 -	0.500 0.500 6.833 6.E33	634,451 - 69,127 24,093 - 942 490,404 161,129 - 9,225
BASE 2.83 (150)(17.67)(15 -1.33 (150)(13.67)(5		6.833 3.667	803, 144 - 53, 304
	343,578	#	2,370,423
	Y	8 .ما =	99 FT.

NCR Form 1 Aug 80 381b

ANDALUSIA SLOI			<u></u>	Date 19 MAY 8
Computed by KEN				Sheet As 8 of
			REVISE	0 12 027.83
STHEILITY (7)		1	1	1
UNIT	2. 	FORCE	ARM	MOMENT
	00) 8.33) 07)(9.20)	2,000 3,460	27.495 18.733	54,990 64,816
RIVER FLOW 68	6(15.67)(9.20)	9,803	18,733	183, 640
EARTH LOADS ((NORMAL)(SHT.PS6)		· · · · ·	
ACTIVE 37.47(2.667	(2, 667)(15, 67)	2,088	9.222	19,256
	(8.333)(15.67) 3(8.333)(15.67)	13,049 9,325	4.167 2.777	54,375 25,896
PISSINE 171.2(5.33)	2 3)(5.333)(15.67) · Z	-38,172	_	
FORCES IN	FORCE IS THAN ACTIVE - NOLLUDING WIND TH, USE ZACTIV		ררד.ו	- 53,171
)(11.00)(15.67)	16, 249	3.667	59,585
PASSINE (SE ** Passive		-38,172		
GREATER		- 28,052	٢.٠٠١	- 49,848

Ubject ANDALUSIA SL	ONGH - PUMIT	STATION		Date 19 MAY 88
omputed by KEW	Checked by	c	hJ	Sheet PS9 of
STABILITY (Y))		REVISE	D 18 COT. (.
UNIT		FORCE	ARM	MOMENT
PUMPS & PIPING 2,870 + 193 2,870 + 1,8 969 (1.10) 969 (1.10) LIVE LOAD 10 SNOW LOAD 2 INLET 5.50 (150	38 (1.10) 23 (1.10) 0 (8.5)(12.107) 0 (15.607)(13.607)	5,002 4,875 1,066 1,066 10,342 4,282 2,700	८.१७७ ७.९३३	18, 342 48, 750 5, 803 2, 705 70, 667 29, 259 45, 001
1.00 (150	5)(8.00)(9.00)2 5)(6.00)(3.50) 5)(8.00)(8.00) =	20,250 3,150 14,400 40,500 [*]	18.167 22.167 18.667	367,882 69,826 268,805 751,514
(545.00- 539.50 (545.00- 539.50 (545.00- 543.00 (545.0- 539.50 (545.0- 539.50) (62.4) (5.33) (13.67)) (62.4) (5.33) (13.67)) (62.4) (6.00) (1.00)) (62.4) (6.00) (1.00)) (62.4) (15.67) (1.00)) (62.4) (15.67) (1.00)	10,756 2,632 5,378 - 1,067	17.167 22.167 6.833 14.167 -0.500	63,853 250,060 318,156 16,603 73,496 37,288 - 2,689 534
		79,400		757,301

ubject ANDELUSIA 5	Longh - Pum	F STATIC	N	Date 19 MAY 8
omputed by KEW	Checked by	ct	J	Sheet PSIC of
			FEJ'	51 EC27.8
STRBILITY	<u>(7)</u>		1	1
UNIT		FORCE	ACM	MCMENT
EARTH ON BAS (115 - 62.4)(5. - (115 - 62.4)(1.	(15.67)(1.00)2	- 9,067	6.833	61,955
115 (547,917-9	5450)(11.67)(1.04)	2 3,015	2.889	11, 372 -
(115 - 62.4)(4) (115 - 62.4)(5) 115 (2.792)(11) -(115 - 62.4)T(6)	5. 67)(1.00)	4, 533	14.157 -0.500 -0.500 -0.500	26,436 - 2,267 - 2,516 450
		23,345	3.972	92,568
UPLIFT (NOT - (545.0-536 - (545.0-536	2 MAC) 67)(62.4)(17.6)(15.6 00)(62.4)(8.00)(60	0)-143,925 0)-27,955	6.E33 18.667	- 983,4+(- 521,8+(
		- 171,880	8.758	F - 1,505,280
(559.30 - 539 (559.30 - 539) (559.80 - 539) (546.50 - 539) - 0.50(62.4)(6 (559.80 - 543) (559.80 - 543)	, 17 (62 A) 5.33 (13.6 . 50) (62 A) (5.33 13.6 . 0) (62 A) (5.33 13.6 . 0) (62 A) (60) (8.0 . 50) (62 A) (60) (8.0	$ \begin{array}{c} 90,021 \\ 7,080 \\ 0,803 \\ 2,184 \\ - 1,123 \\ 6,290 \\ 2 14,377 \\ 2 14,377 \\ 2 14,377 \\ 2 14,377 \\ 2 14,377 \\ 2 14,377 \\ 2 14,377 \\ 2 14,377 \\ 2 14,377 \\ 2 14,377 \\ 2 14,377 \\ 2 14,377 \\ 1 1 (1 $		352, 28 900, 210 48, 378 1,074, 207 28, 757 - 18, 717 137, 430 231, 187 231, 187

NCR Form 1 Aug 80 381b

Subject	il-usia	SLOVAN	- FUNE -	STATICAL		Date 18 Oct. EE
Computed by	LEN	The second s	necked by	cł	J	Sheet PSICU
	THE IL ITY	<u>(Ţ)</u>		1	1	ł
	UNIT			FORCE	ARM	MOMENT
	OTER (100 (559,80- (559,86- Tr (2.333) ²	5 39,5X62 5 39,5X62	4X7,67%1.00) 4X15.67X1.00)	9,716 19,850 - 1,0%	-0.500	- 9,925 534
			-	343,898		3,185,252
	EETH CH. 52.6 (5.5 52.6 (1.0	15.51.	ce) 2	9,057 - 210	6.533 13.323	61,955 - 2,800
	52.6 (2.9)	-111.6-75(1.1	0Ú2	(,7?)	2.88?	5, 174
-	52.6 (4.6 52.6 (8. 52.6 M	292) (15.5)	(1.60)	1, E55 6, 835 - 899	_	· -
				18,450		87,738
Ц - -	P LIFT (1 (559.8-5 (559.8-5	00 YR.) 36.67/62.4 38.00)(67.4) 17.5)(15.67) 4)(80)(20) =	-399,637 - 87,060	6.633 18.657	- 2,730 ,720 -1,635,158
				-486,697		-4,355,878

NCR Form 381b

IDJECT ANDALUSIA SLO	Checked by		FJ	Date 18 MAY 88 Sheet PS 11 of
STABILITY (X)				E 13 CCT. 88
ЦNIT		FORCE	ACM	MOMENT
ROUF 0.33 (150) (10	0.00)(13.67)	6,835	5.000	34,175
-0.75(150)	(e, α) (3.67)	12,303 12,303 - 2,686 15,300	9.625	118 416 - 25, 853
)(2.50)(2.50)) 77 (1.333) ² (2)	11,965 - 469 - 838 - 782	2.250 12.667	- 1,055 - 10,615
BMS. 0,50 (15.) (BELOW SLAE) 1.33 (150)		498 2,910	5.000 9.625	, ,
1,00 (150)	7.00)(5.00) T (2.00) ² (20.50)(11.67) (20.50)(11.67) (11.50)(13.67)	96,370 - 5,250 - 1,885 35,885 35,885 23,581 - 1,350	4.500 4.500 0.500 15.167 7.833	- 23,625 - 8,483 17,943 544,268 184,710
BASE 2.83 (150) -1.33 (150)	(17.67)(15.67) (13.67)(5.33)	117,539 -14,536		920,683 - 113,860
	•	343,578 [∓]		2,589,075' .536 ^{FT.}

NCR Form 1 Aug 80 381b

ł

D-13

mputed by KEW	Checked by	chu]	Date 19 MAY 8 Sheet PS12
				ED 12 067. 6
STABILITY	$(\overline{\mathbf{x}})$			
LINIT		FORCE	ACM	MOMEN
WIND 24 (1		6,778	21.337	
	$3.67)(3.417) \div 2$	561	9.867	
	9.00)(2.75) 9.00)(2.25)÷2	594	8.958	
•			+ =	1,00
		8,176#		157,138
RIVER FLO	W - NONE			
ENDTH - EN	pupil on opp.	_		
	des			
PUMPS & PI	PING			
	1938 (1.10)	5,00Z	12.667	63,36
	-1823 (1.10)	4,875	12.667	61,75
969	$(1, \mathcal{E})(2)$	2,132	8.66 7	18, 47
LINE LOED	100(8:5)(12.167)	10,342	5.000	51,710
	·			·
SNOW LOAD	[Told. E1)(Told. 15) 20	4,282	7.833	33, 54
INLET C.50	s(150)(6.0)(6.0)	2,700	4.000	10,800
	$(150 \times 7.5 \times 9.00)$	10,125		5.063
	(150)(7.5)(9.0)	10,125	. 1	75,931
	(150)(6,04)(3,50) (150)(8,00)(8,00)	3,150 14,400	4.000 4.000	12,600 57,600
				57,000
		40,500	4.000	162,00

NCR Form 381b 1 Aug 80

. •

ubject ANDREMSIA SL	OLIGH - PLIMP	STATION	1	Date PI. AVE
mputed by KEN	Checked by	cł		Sheet FL, E
		<u></u>	Rev	ISER RECORD
STREILITY (X			{	
LNIT		FORCE	ARM	MOMEN
WATER (NORN				
(542.00-538.17	1AL) (62.4(5.33)(13.67)	17,413	7.833	136,390
(545.2 - 539.50))(62.4)(5.33)(13.67)	25,06	7.833	195,873
(545,00- 539,50		18,533	4,000	1 ' .
(545,00-543.00)	(62.4)(6.0)(1.0)	749	4.000	1 1
(545.00-539.50	5)(62,4)(15.67)(1.01)	5,378	- 0,500	
(545.00-539.5		5,378	16.167	85,940
(545.00 - 539.5)	(67,4)(7.67)(1.00)	2,632	11.833	
(545.00-539.50 - 17 (2.333) ² (62.4)		5,378	7.833 4.500	42,126
1] (2, 33) (62,7)			-7.300	
		79.401₹		562,121
EARTH ON BASE	PROJ. (NURMAL)			
(1)5-62,4)(5,5)(15,1	5/1.00)2	9,067	7,633	71,022
-(115-624)(1.0)(4.0. Z	-)(1.00)2	- 210	7.833	- 1,64-5
115 (547.917-545.	0)(11.67.)(1.01)2	3,915	7.833	30,666
(115-62.4)(4.625)	(7,67)(1,00)	1,866	11,833	22,080
(115-62.4)(5.5)(1)	5.67)(1.00)	4,533	7.833	35,507
115 (2.7.92)(15.67	11.01)	5,031	7. 833	39,408
$-(115-62.4)\pi(2.3)$	333)=(1.00)	- 899	4.500	
	-	23, 303*		192,942
LIFLIFT (NORN	MAL)			
- (545.0-536.67	(62.4)(13.67)(15.67)			-1,127,365
- (545.0-538.00)(62.4)(8.00)(8.0)	- 27,955	4.u.	- 111,820
Form		-171,820 [#]		- 1,239,185
g 80 381b				

}

•

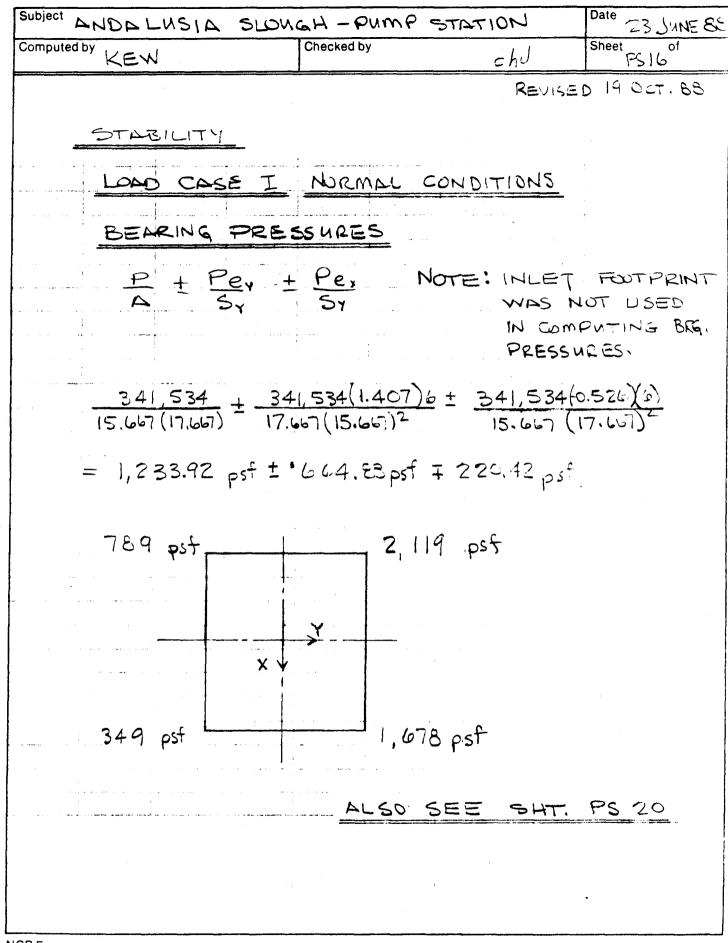
bject ANDALUSIA	SLONGH - PLIMP	STATION	-	Date BOST. 8
mputed by KEW	Checked by	chu		Sheet of PSIEd
STABILITY	$(\bar{\mathbf{x}})$	1	1	
ПИЛ		FORCE	ARM	MOMENT
WATER (DO VE	TORCE	- ANIOI	
	3B.17X62AX5.33X12.6	7) 96,068	7.833	752,501
(559.30 - 5)	39.50)(62.4)(5.23)(13.6	150,09 (10	7.833	
	551.00)(62,4)(1.00)(13.1		7.833	
	39,50)(62.4)(6.00)(8.0		4.00c	243, 212
(546.50 - 5	34, 50)(62.4)(1.00)(5.0		4,501	9,828
- 0.50 (62.		- 1,123	4.000	- 4,492
	43,00)(62,4)(1.00)(6.0		4.000	25,160
	47.00 (62.4 χ 1.00 χ 9.0)		4,000	57,50%
(559.2 - 5)	59.50)(62.4)(15.67)(1.00) 59.50)(62.4)(7.67)(1.00)	2 39,699 9,716	7.833 11.833	310 962
	1,56)(62,4)(15,67)(1.66		7832	155,485
- M (2,325)	(62.4)(1.0)	- 1.067	4.500	- 4,802
				F1
		343,898		2,420,923
FARTU ON B	SE PROJ. (100 YR.)	<u></u>		
	15.67)(1.00) 2	9,067	7.833	71.022
- 52.6 (1.0)		- 210	7.233	- 1,645
	2			
52,6 (2,917)	(11.67)(1.00) Z	1,791	7.833	14,029
52.6 (4.62	5)(7,67)(1.00)	1,866	11.833	22,000
	72)(15.67)(1.02)	6,835	7.833	53, 539
$-52.6\pi(2.$	333)2(1.00)	- 899	4.500	- 4,046
•		18,450#	• +	154 97 FT-
	1			3
4PLIFT (10			_	a. 1
	36.67)(62.4)(17.67)(15.6 20.0.2(12.4)(17.67)(15.6			-3,130,357
Form	38.0)(62.4)(8.00)(80)		·	- 346,240
80 381b		- 486,697*		-3478577

omputed by KEW	Checked by	chJ		Sheet of PS14
			REVISE	D 18 UCT. 88
STABILITY (7)	-			
LOAD CASE I	NORMAL	CONDIT	IONS	
<u>Ц</u> NIT		FORCE	ARM	MOMENT
DEND LOND OF STRL	ICTURE	343, 578	6.899	ET. 2,370, 423
. WIND	•••• *• •	2,000 3,460	27.495 18,733	1
EARTH - ACTIVE		2,088 13,049 9,325 - 29,922	9.222 4.167 2.777 7.777	19,256 54,375 25,996 - 53,171
PUMPS & PIPING	Ļ	12,009	6.800	٤١, ٤٥
LIVE LOAD		10,342	6.833	70,65
SNOW LOND	:	4,282	6.833	29,259
INLET		40,500	18.556	751,514
WATER	· · · · · · · · · · · · · · · · · · ·	79,400	9,538	757,30
EARTH ON BASE	PROJ.	23,303	3.972	92,568
UPLIFT		- 171,880	8.7 <i>5</i> e	- 1,505,280
		341,534	8.240	2,814,275
$e_{\rm Y} = 8.240$ -	-13.667 = 1	407 FT	< 13.6	57 = 2.27 8

NCR Form 381b

ì

Virginitary


-

۰.,

f L

Subject ANDALVISIA SLOVIGH		TATION		Date 20 JUNE ES
Computed by $K \in W$	Checked by	<u>ch</u>		Sheet PS1501
			REVISE	ED 19 Oct. 88
STLRILITY (X)	_			
LOAD CASE I	Norm	al con	DITIZ	01-5
LINIT		FORCE	ARM	MOMENT
DEND LOND OF STRUCTURE		# 343,578	7.536	589,070
WIND (NOT IN COD). W/ T WIND)				
FLIMPS + PIPING		12,009	11.957	143,590
LIVE LOAD	ł	10,342	5,000	51,710
snow lord	ł	4,282	7.833	33, 541
INLET		40,500	4.ax	162,000
WATER	4	79,400	7,080	562,121
EARTH ON BASE F	proj.	23,303	8.2 8 2	192,992
UPLIFT		-171,880	7.210	-1,239,185
		341,534	7.308	2,495,839 ^{FT}
$e_{\chi} = 7.308 - 15$	- = -0	. 526 FT	< 15.66	7 = 2.611 FT

.

NCR Form 381b

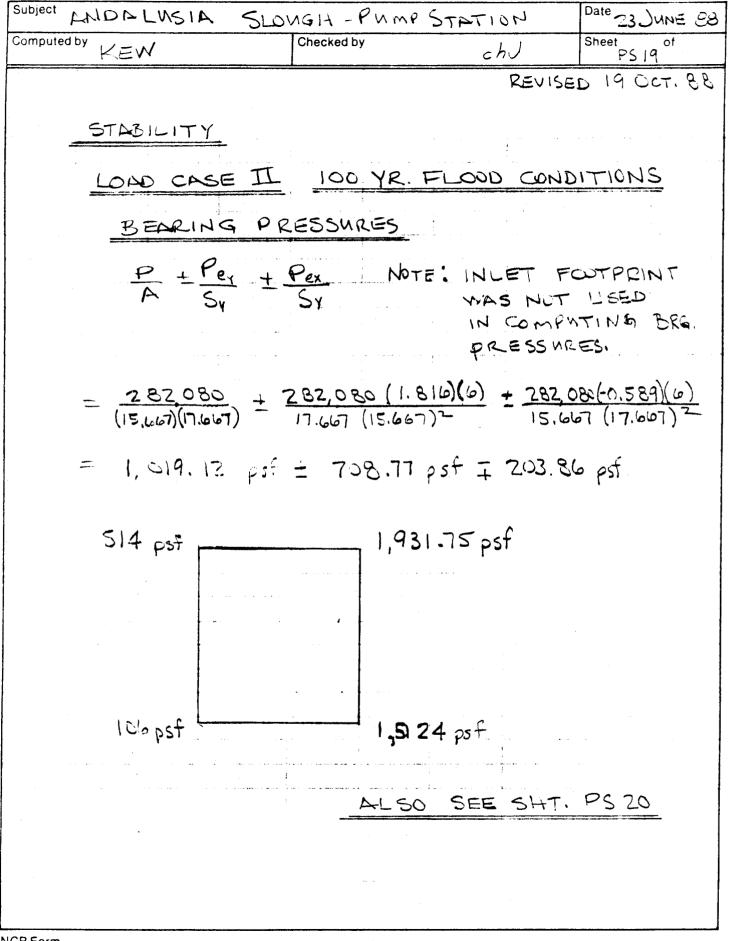
D-19

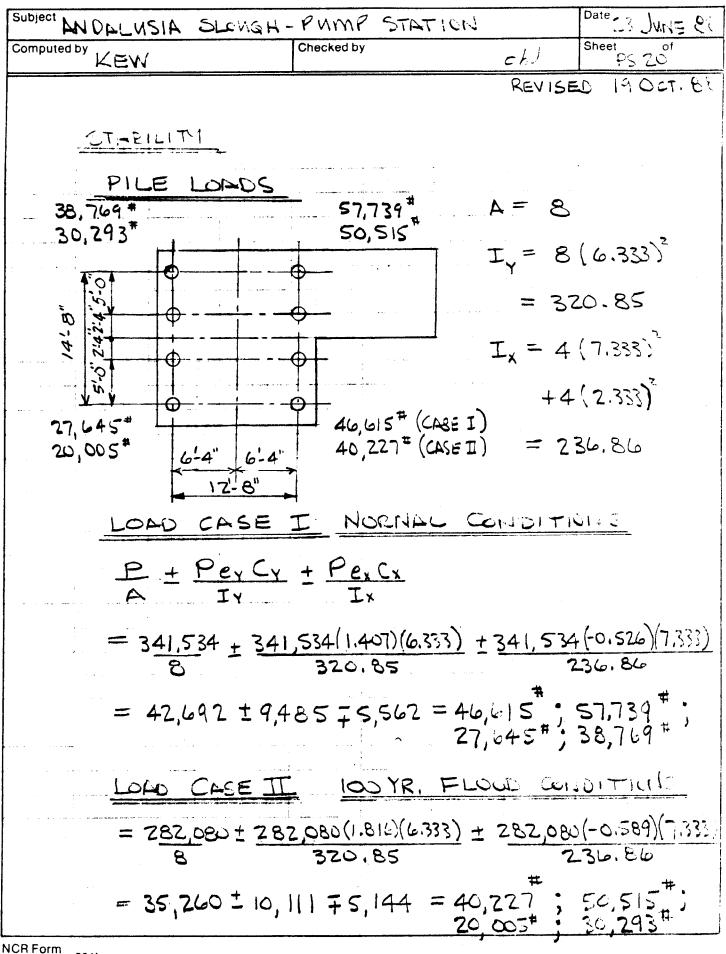
ANCALUSIA SLOV		STATION		Date 20 JUNE
Mputed by KEW	Checked by		chul	Sheet of PS 17
			REVISE	0 19 Oct. 88
STABILITY (Y)	_			
LOAD CASE I	- IDAYE	FIME		\overline{D}
		1		1
UNIT		FORCE	ARM	MOMENT
DEAD LOAD OF STR	UCTURE	343,578	6,899	2,370,42
WIND		2,000	27.495	54.99
RIVER FLOW		9,803	18.733	183, 640
EARTH - ARTIVE - PASSIVE		16,249 - 28,052	3.667 1.777	57,585 - 49, 249
PUMPS & PIPING	ţ	12,009	6.200	Ei, 65
LIVE LOAD	Ļ	10,342	835.ما	70,60-
INLET		40,500	18.556	751, 514
WATER	1	343,898		3,185, 25;
EARTH ON BASE F	proj	18,450		87, 798
LPLIFT		- 486,697		-4,355,878
n and a second	an a	282,080	8.647	2,439,804
$e_{\gamma} = 8.649 -$	13.667 = 1.8	16 FT <	13.667	= 2.278 Fr
	· · · · · ·			

1

mputed by KEW	hecked by	cł	J	Sheet of FS18
			REVISE	D 19 CCT. EC
STRE'LITY (X)				
LOAD CASE I	100 YR	. FLOOD	CON	DITIONS
UNIT		FORCE	ARM	MOMERIT
DEND LOND OF STRUCTURE		# 343,578	7.536	2,589,070
WIND (NOT IN CONJ. W/Y WIND)	· · · · · · · · · · · · · · · · · · ·			
PUMPS & PIPING	4	12,009	11.957	143,590
LIVE LOAD	ł	10,342		51,710
INLET	ł	40,500		162,000
WLTER	↓ ↓	343,898		2,420,42
EARTH ON BASE PR	LOJ.	18,450		154,972
LIPLIET	1	- 486,697	_	-3,478,59
	-	282,080	7.7.45	2,043,670
$e_{\star} = 7.245 -$	15. <u>6</u> 67 = 2	-0.589	FT < 1	$\frac{5.667}{6} = 2.61$

NCR Form 381b

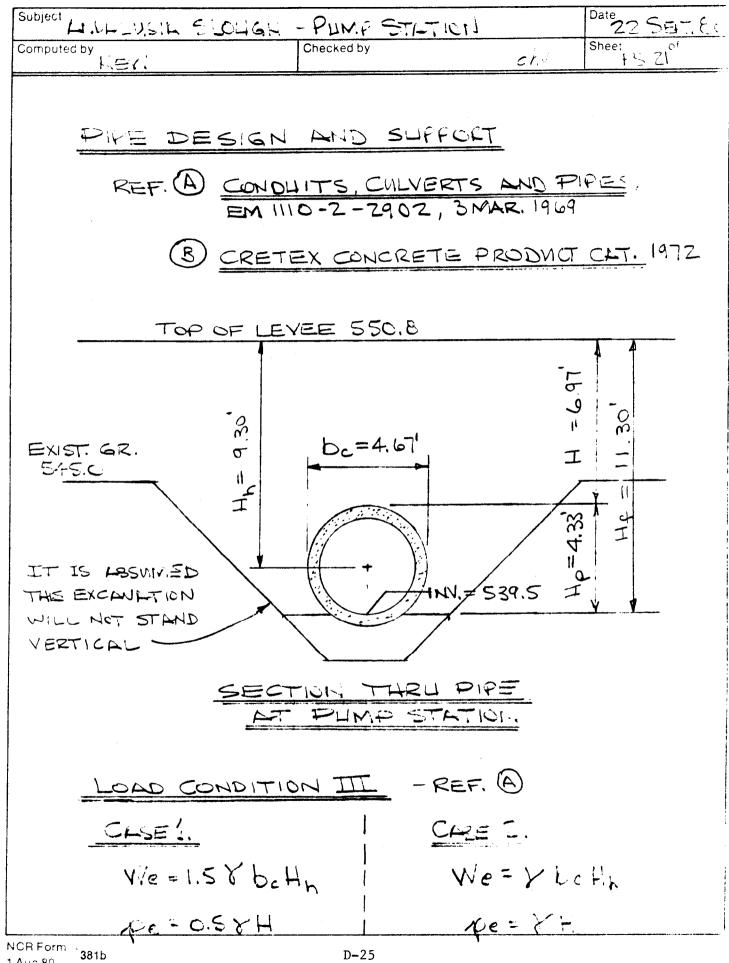

;

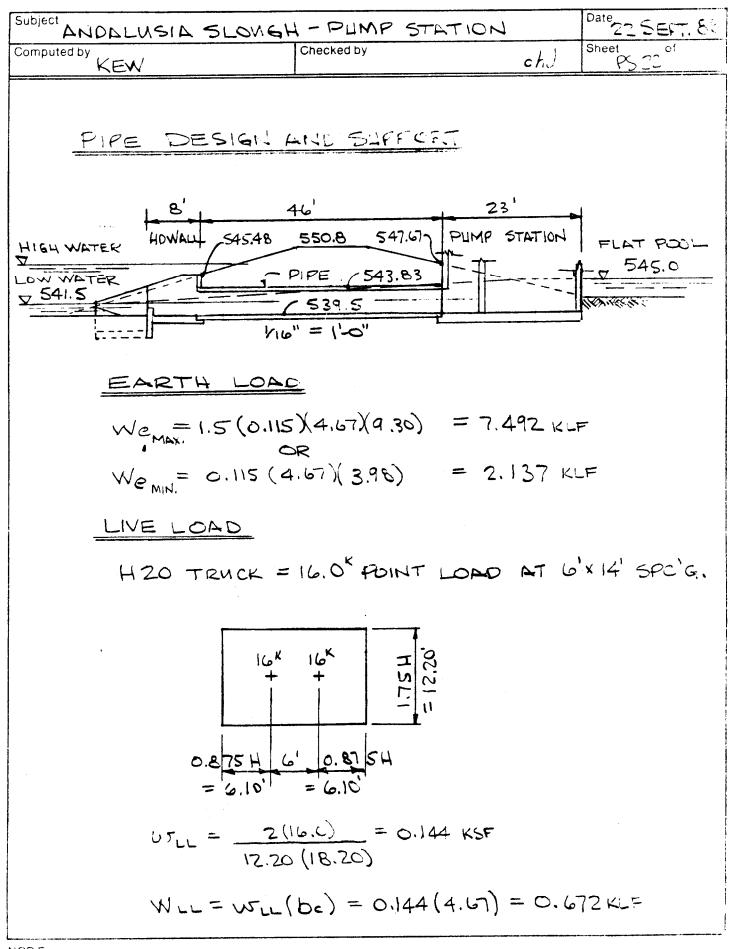

2

Þ

•

1

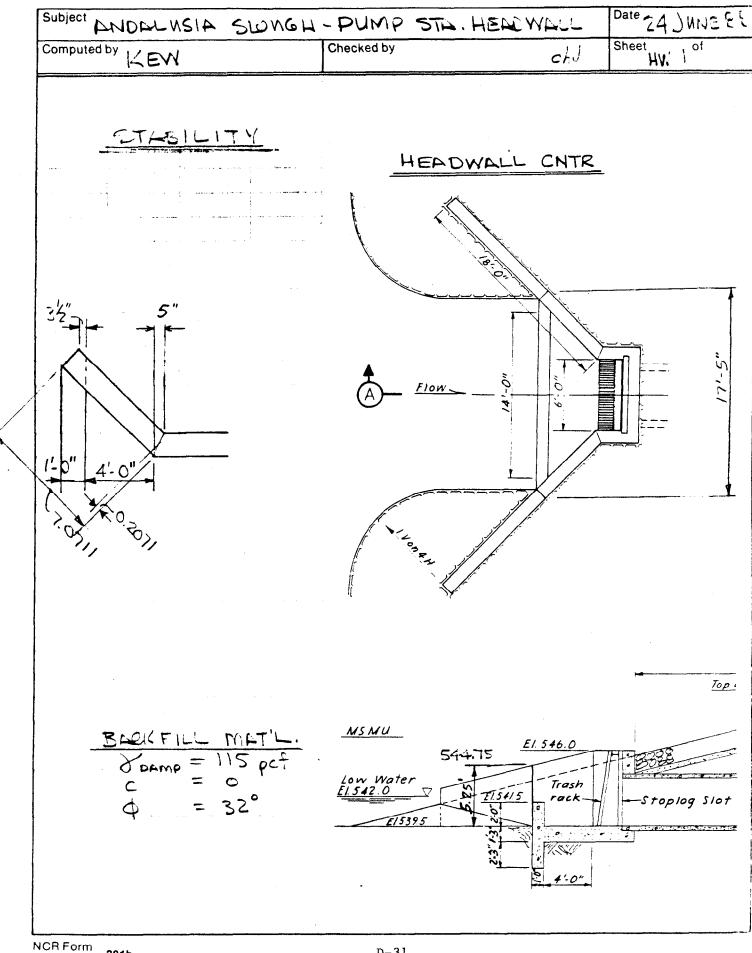


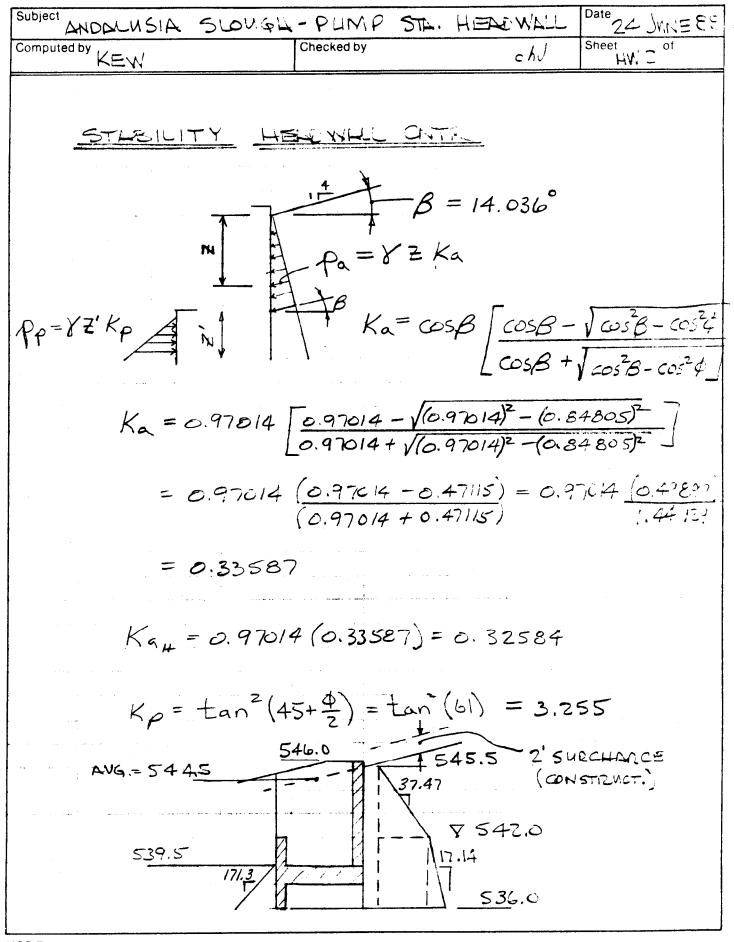

1 Aug 80 381b

į

mputed by KEW	SLONGH-PUN Checked by	chu chu	Date 24 OCT. 8 Sheet PS20 a
STAR LIT	Ч		
CHECK	<u>sliding</u>		
CASE I	(NORMAL)		
WIND		5,460	
EARTH -	ACTIVE =	<u>24,462</u> 29,922*	
EARTH-F Piles 8	ASSIVE	38, 172 [#]	
		$\frac{12}{50}, \frac{300}{172}$	
F.S. =	50,172 = 1.68	2	
	29,922		
CASE II	- (100 YR.)		
WINE		2,003*	
RIVER	FLOW/ ACTIVE	9,803	
		16,249 8,052**	
EARTH - F		38, 172 [*]	
PILES 8	3 (1,500)	12,000 50,172 *	
F. S. =	$\frac{50,172}{28,052} = 13$. 17	
	,		
P	r riverward	• • •	

1 Aug 80


NCR Form **381b** 1 Aug 80


NCR Form 1 Aug δ0 381b

	LONGH-PUMP STATI	012	Date 26 SEVT. 8
Nputed by KEN	Checked by	chi	Sheet PS 24
PIPE DES	Mari Mr. Support	1	
TOTAL 1	01205		
1040	- MAXIMUY	n min	IMMM.
	74971	KLF 2	,137 KLF
EARTH	0.672		
PLOT N	N/T	8.164 KLF	
0.1459	7[2.33]-(2.00)] 0.651	0	.651
WATE	R 0.342		<u> </u>
		• •	2.78012
BONY			.699 1089 KLF
	7.992	KLF	I.U BY KLF
0115-1/	F.S. ISGAINST LIPLIFT	-	
F, g	5. = 2.728 = 1.64	> 1.50	CKAY FLI
	1.697		TEMPERAT
		AN CLOS	(Par R)
SELEC	t class of Ast	IXI PIPE	
$\mathcal{D} = \langle$	WE WIL SEOI		
.01	WE + WL Stor LEE LEL D		
· · ·	<i>+</i> E , <i>-</i> /		
GIVEN	1:		
QUOE	SIZE = 4e'' (b	= 4 67 - 27	
-	DING CLASS = A or C	– /	
PROJ	$\mathbf{R} \mathbf{T} \mathbf{b} \mathbf{N} \mathbf{R} \mathbf{A} \mathbf{T} \mathbf{b} \mathbf{k} = 0.$	90 CLASS	\land
	= 0	.90 0 0	10 CLASS
SETT	LEMBNT RETID = 1	,00 CLASS	<u> </u>

Subject ANDALUSIA S	LONGH - FWY:F S	TETICIL	Date 26 SEVT. 8.8
Computed by KEV!	Checked by	clu	Sheet of PS25
PIPE DESIG	N AND SUPPOLT		
GIVEN:			
SAFTY	Factor = 1.00	(0.01° CRA	2×)
	OAD FARTOR P		
$\frac{H}{b_c} = 6$.97 = 1.493	SAY 1.50	
CLASS	"A" $L_{f} = 4.4$	$\begin{array}{c} 1,9 \\ - \end{array} \qquad \begin{array}{c} P = 0 \\ - \end{array} \qquad \begin{array}{c} - \end{array} \qquad \begin{array}{c} \end{array}$	1.70 <u>USE</u> 4.00
	c'' := 2.	16 1.9	् २.९
FIND P	IPE CLASS FOR	"À OR"C	"BEDDING
CLASS	A BEDDING		
D.o.	= 8.164 (1.0) 4.00 (4.0)	= 0.510 K	= 5:0
	CLASS 1 P	IPE D-LOA	0 = <u>8(c</u>
	"C" BEDDING	v	₽
Dio	$= \frac{8.164}{2.0} (1.0) =$		
	CLASS 3 F	PIPE D-LO	$AC = 135C^{-1}$
NCR Form 381b	D-29		

ANC ALUSIA	[Checked by		1	Date 26 Se	<u>p</u> *
mputed by KEV.				ct.J	Sheet PS 26	
				···· - ·······························		
		-				
PIFE DE	ESIGN A	and Su	PFULT			
• / •		"A" P	TILL		< 50	
NOTE.	CLASS	A DED		N CANN		
	FOR PI	PE SUP	porter	2 OU F	ILES.	
	THE	oils are	S SUCL		TIE	
,	• • • •	STATION				
	ON PI	LES. IN	order	Z, TO	CONTROL	•
		RENTIAL				
	•	EN THE				
						e- (*
					SIDDMIT	Ξ.\
	•		PIPE 15			
	•	LES SER				
	•					
	•					-
•	•					-
	•					-
· · ·	•					- :
	•					- :
	•					- :
· ·	•					- :
	•					
	•					
	•					
	•					
	•					
	ON PIC	ES SER		et. PF	-5.	
	•	ES SER		et. PF		
	ON PIC	ES SER	e shee	et. PF	-5.	
	ON PIC	ES SER	e sher	et. PF	-5.	
	ON PIC	ES SER	e shee	et. PF	-5.	
	ON PIC	ES SER	e sher	et. PF	-5.	
	ON PIC	ES SER	e sher	et. PF	-5.	
	ON PIC	ES SER	e sher	et. PF	-5.	

omputed by KEN	Checked by		chV	Sheet of HI, 은
STABILITY 4	HEREVILL CIT	ŢŢ		
		1	l	
UNIT		FORCE	ARM	MERNET
		7.000		7 0 - 5
WALLS 1.00(15	O(BO)(BS)	7,800	0.50	3,900
•	$(\sigma)(\pi)(4.0)^2 \div 4$	- 1,884	0.50	- 942
	50%2.29%6.5)2	4,466	2.145	9.580
	(15.00)(5.5)	12,375	8.00	90,000
	50) 6.86) (5.25) 2	10,805	6.00	64,610
	50) 6. E (<u>1.25)</u> Z	1,286	דפו . 5	45 في ف
BASE 1,25 (15	6)(8.0)(7.5)	11,250	3.75	42,188
· · · · · · · · · · · · · · · · · · ·	X4.4167)(4.4167)Z	3,658	6.028	22,043
	2	0,000		
WATER 2.50 (62	4(6.00)(7.5)	7,020	3.750	26,325
	4)(4.00)(4.00) 2	2,496	آطعا . ف	15,392
	2	,		,
0.50 (62	.4)(1.00)(15.0)	468	6.00	3,744
UPLIFT-3.75(62	.4(8.00)(7.5)	-14,040	3.750	- 57. 650
- 3.75 (62	.4)(4.4167)(4 <u>41</u> 67)Z	- 4,565	6.028	- 27,518
	2		:	-
-6.00 (62	4)(1.00)(16.5)	- 6,178	800	- 49,474
		# 24 057	11163	FT-
EN OTU LANDE	(1 - 2)	34,957	4.6663	163,118
EARTH LOADS ACTIVE	(NORNAL)(SHT. HWZ)			
-	0)(9.50)(8.00)	5,695	4.75	27,051
••••	0X1.30X0.007	5,097	4.25	25,4-87
	5 <u>(3.5)</u> (6.00)	1,636	7.167	13, 159
	2		1.101	, , , , , , ,
37.47 (2.	5)(2.5)(17.4142-8.0)	1,102	6.833	7,530
	2	· · · [
37.47 (3.5	5)(6.0)(8.00)	6,295	3.00	. 18,885

NCR Form 381b 1 Aug 80

1

.

D-33

.

bject ANDALUSIA SL	Checked by	· · · · · · · · · · · · · · · · · · ·		Date 24 JUNE Sheet of
mputed by KEW		<u>с</u>	hJ	HW
STABILITY H	EADWALL CN	TR.		ł
UNIT	······	FORCE	ARM	MOMENT
ACTIVE (CO	· · · · · · · · · · · · · · · · · · ·			
	.50)(6.00)(7.4142-8.	5,291	3.00	15,873
•	00)(6.00)(17.4142)	•	2.00	10,746
- 37.47 (5.)	2 50)(17)(2.5)	-4,046	6.00	- 24,275
•		#		
	an a	27,543		94,435
PASSIVE	50) 3.50 (17.4142)	-18 271	1.1667	- 21.317
	2			
CHECK OV	ERTURNING F	=.5,		30 JUNE SS
34,95				
3.8337	8'-6",	4.6663 ^{FT} (5	SHT. HW	3]-
$M_{R} = 34,95$	57 (3.8337) +	MPASSINE		
= 134,0	16 + 21,317	= 155,33	3	*
Mo = MARTIN	e = 94,455 ^r			
$F.S. = M_R$	$=\frac{155,333}{94,455}=$	1.64 >	1.50 c	okay

NCR Form 1 Aug 80 381b

1 Aug 80 381b

D-35

uted by		Checked by		ohd	Sheet HW 6 of
STABI	LITY HER	WHLL ONTH	<u>``</u>		
REC	OMPUTED	LONDS	1	1	1
	UNIT		FORCE	ARM	MOMEN
ADDED	1.25(150)(1.0)	(17.4.142)	3,265	-0.50	- 1,633
BASE	1.25(150)(24	-167X17.4142-8.0)	1 '	1.2084	5,155
	1.25 (150)(4.7	1071)(4 <u>.7071</u>)Z	4,154	3.9857	16,557
ADDED	6.0 (115)(1.0)(1	7.4142)	12,016	-0.50	- 6,008
ELRTH	$-115(\pi)(2.5)$	2(1.0)	- 2258	-0.50	1,129
	5.6(115)(2.416 4.8(115)(4.707	(1)(4)(4)(4)(2)(6)(6)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)	14,652	1.2087 3.9857	17,705 48,749
		2	10,201		, _, , , ,
	-375(624(1.0)		- 4,075	-0.50	2,038
UPLIFT	-3.75(62.4)(7. -3.75(62.4)(4.7		-5,324 -5,185	1.20E4 3.9E57	- 6,434 - 20,666
		2			20,000
PREVIOU	ns Veilt. Loh	u⊃S =	34,957	4.6653	163,118
			68,699	3.1982	F 219,710
EARTH	LOADS		-, .		
AETIN 37	E 47 (2.0)(9.75)(1	7.4147)	12,724	4.875	62,030
37.	47 (375)(3.75)(1	7.4142)	4,588	7.250	33,26
27		(74)	14,681	3.04	11 0/13
	4 (6.00)(6.00)(1)		5,373	2,01	44,043
	٢			<i>,</i> .	
- 370	47 (575)(17)(2		- 4,230	6.CC 	- 25,38
			33,136		124,702
PASS	IVE (SEE SH				- 21, 317

omputed by KEW	DNGH - PMMP STL.		Date 30 JUNE Sheet of
KEW		cł.J	Sheet of HW7
ELECTY-	HELLIVIK _ CIJTR		
PB-CHE	EK SLIDING		
	AN JEIDING		
PACTIVE	$= 33,136^{\#}$		
	•		
PPASSINE	$= +\mu P vert = 18$	27, +0.30	(62,699)
	= >	8,881#	
	- 3	0, 001	
$F_{1}S_{1} =$	38,881 = 1.17	<1,50 No	Gard a
	33,136		
WITTON, T	Constiliction) She	charg E	
(DARTIVE = 33,136 -	17 7.74 = -	キ クァ イロ
. F	ARINE - 55,156-		20,412
F,S,=	38,881 = 1,90	< 2.00	ALMOST
-	20,412		GOOD ELVIT
CHECK	BEARING PRESS	M (285	· · ·
P., =	= 68,699 [#] ZN	1=372 0	45
· v			
	$\overline{Y} = 4.7$	703	
~		0 5	OF FT OF
e	= 4.703 + 1.00 -	$\frac{4.50}{7} = 0$	455 < 45
		<u>د</u>	5.58

1 Aug 80 381b

) :}

;

mputed by KEV!	Checked by	chu	Date 30 JUNE ES
		· • · · · · · · · · · · · · · · · · · ·	
	- HEREWHIL CN		
P + M	$e_{Y} = 68.69$ 9.5 (17.4	<u>9 + 68,699</u>	(0,953,6)
4	9.5(17.4	$(9.5)^2$	17.4142)
	= 415.3	± 249.9 =	665.2 psf
			0F. 165.4 pst
			10517 ps.
NOTE:	MJTHOUGH BEAR	ing appeals to	re n
	PRUBLEM, SLIDI	ng is. Providi	NG TIE
_	RODS BETWEEN	THE PLMP ST	LTION AND
	THE HELOWALL (SLIDING.	NIL PRE	VEIG (
		#/1220	
/	F = 33,136 =	=:6,562 [#] /ROD	
v.	2		
	Pool uper E	1"\$ A 522, GR.5	Prons
used Battered	TROVIDE C-	W/ TURNBUR	KLES
PILES			
No. And Second and Second and Second	CONSIDER PILE	FOUNDATION	
-	BATTERED (4:1) FRONT FILE:	>)

1

£

1

Date 30 JUNE 88 Subject ANDALNSIA SLOUGH-PUMP STE. HEADWALL Computed by KEW Sheet HW9 of Checked by etJ HEHIWILL CIUTR PILE LONDS - SPILES A = 5 $C = \frac{2(0) + 3(6.5)}{5}$ = 3.90 FT $I = Z(3.90)^2 + 3(2.0)^2$ = 30,42 + 20,28 = 50.70 FT 6'-6" - 6 $e = \overline{Y} - C = 4.703 - 3.90$ = 0.803 FT $\frac{P}{P} \pm \frac{PeC}{I} = \frac{68,699}{5} \pm \frac{68,699}{50.70} (\frac{0.803}{50.70}) (2.6 \text{ or } 3.9)$ $= 13,740 + 2,829 = 16,569^{\#}$ - 4,244 OR 9,496^{\#} PILE LOADS - 3 PILES A = 3 $C = 1(0) + 2(6.5) = 4.333^{FT}$

Puted by KEI		Checked by		ch. I sh	"H,v,`'.C.``
<u>N=1</u>		<u>,L</u>			F(1) .~
STABIL	ITY-HE	HEVILL CN	<u>16.</u>		
	- 1 ($(23)^2 + 2(2)$			
1 -	- 1 (4,5	$\sum r = r = r = r$			
	= 18.7	7 + 9.39	= 28.16 F	τ^{1}	
e	= c	= 4.703 -	4.333 = 0.	370 FT	
P	+ Poc	= 68 699	+ 68 699	(0.370)	2.167 OR 4.323
	- rec	= 68,699 3	1 80,011	28.16	\backslash
		= 22,900	+1,956 -3,911	- 24	670 C
				31	,0,0,0,#
			,		

•

ecianoalusia q	SLOUGH - PUMP	STRTICIN	Date 20 SET. 1
puted by KEW	Checked by	chu	Sheet PF-1 ⁰¹
PILE FU	NOLTIUI DESIS	[
KEF: 1 FO	UNDATION DESIGN	, WAYNE C	TENG, 19:62
	DUNDATIONS FEAT AY 1982	TH STELCTURE	5, NAVERI DMF
PUMP STA	FION (SEE SI	+T. PS-20)	
PILE L	$240 = 57,739^{+}$	= 28.87 TOIL	(RIVELSICE R
For B	MTERED PILE (2	(1), P = 1.03	(28.87)
		= 29	.76 TON
FROM	ECTING A-EE		
-	ES DRIVEN INTO 1774 BLOW JOIN		
2) D 01	ETT OF BULING	15 ONLY 16T	BELOW BETTER
$\phi = 35^{\circ}$; 8=115 pf	REF.C., FO	ase 12
$N_q = 40$; $N_{r} = 45$	REF.D, f	age 58
Guit =	TR RT (YDNg +	- 0.68 R, Nr)	
÷	$2\pi R_{AL}(\gamma Z + q)$	K tan & R	2EF. () Eq. (8- + Eq. (8-1
			pg. 212 = 213

NCR Form **381b** 1 Aug 80

ļ

)

ļ

}

]

••••

ł

.

"ANDLUSIL S	LOUGH - PUMP STATIO	
Lited by KEW	Checked by	Chil Sheet PF-2 of
DIE ENUN	DISTICN DEDISIU	
TILL FORM		
	$R_{T} = RADIUS OF PIL$	
	Ra = 4NG. RADIUS O	
	$\gamma = n nit weightD = total penetra$	OF SUIL (BUNYANT WT.)
	L = LENGTH OF PE	
•	GRANULAR	
٠	z = depth of ce	
	• –	URCHARGE LOAD.
	K = COEFFICIENT	URCHARGE LOAD. OF LATERAL EARTH
	PRESSURE (AS	SUME 1.25) REF. 2,
		pg 7.2-194
Assume 4	AUFT PENETRATION	I INTO GRADULAR SOIL
	47.5" TOTAL PENE 44" BUTT CIRCUM.	TRATION (50 FT FILE)
	22 TIP CIRCUM.	3.50 RADIUS
	B3 ANG. CIRCUM.	
$Q_{u_{LT}} = TT (1)$	3.50 [(115-62.5)(40) +	0.6 (115-62.5) 3.50) (45)
5	144 L 52.5	
+211	(5.25)(40) $(15-62.5)(4)$	$\frac{0}{2}$ + 7.5) (1.25) tan 35)
= 672	+ 138,945 = 130	1.617#
	- 1]
CALCINI AT	= REDUCTION FIN	NE TO GREY P ARTION
NOTE: SEE	PS-ZO, PILES A	LE FIR ENONGH APAIT
m	DRE LIKESTION (1)	REF. 2 197.2-204

Subject LNDE LUSIE SLOWGE - PUMP STATION Date 20597, 85
Computed by CAU Strend PERS¹
REF. (3) DESIGN OF PILE FOUNDETURS AND
STEVENTHES, EMILIO-2-2905

$$F = 1 - (2 - 1 - 1) = REF. (3 - 4 - 1)$$

 $REF. (3 - 1 - 1) = REF. (3 - 4 - 1)$
 $REF. (3 - 1 - 1) = REF. (3 - 4 - 1)$
 $REF. (3 - 1 - 1) = REF. (3 - 4 - 1)$
 $REF. (3 - 4 - 1) = REF. (3 - 4 - 1)$
 $REF. (3 - 4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 63.63$
 $REF. (4 - 1) = 127, 262 = 127, 262 = 127, 262 = 127, 262$
 $REF. (4 - 1) = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 = 127, 262 =$

} ; ;

1

•

	ANDALUSIA	SLONGH - PLMP	STATION	Date 20 SEFT. 89
mpute	^{d by} KEW	Checked by		LU Sheet PF-4

	PLE FU	UNILTRE DES	ola N	
	PILE C	LPAD ITY		
	$c_{i} = c_{i}$	$\frac{2nit_{e}-5}{F(5)} = 6$	<u>3.63</u> - 5.00 2.0	
		= ?	26.82 <	29.76 REYD
			11.0% 11.05	der designed
	Ben The Lur	SIDELED OKAY NG CONSIDELED ROW AND THE L. ALSO OVERT ECTION WILL BE	IS THE LA S ONE WITH WRNING IN T	THE TRANSVERSE
	PILE L	<u>0120</u> = 38,769*	= 19.35	(LAND SIDE ROLL
	LSSUNE	35 ^{FT} PERETR	LTICK INTO PILE/44" BH	5141112412 SOIL TT \$ 24" T(F)
	$\mathcal{L}_{\mathcal{S}}}}}}}}}}$	3.82) ² [(115-62.5)(40 144	+ 0.5(115-52.)	5) <u>3.82)</u> (40] 12
	+277(5.41)(35)[(115-12,5	$\chi_{\frac{35}{2}} + 7.5](1.3)$	257(tor.35)
	= 812	+ 113, E94 = 1	4,706	
	QNLT = 1	14,706 (0.9115)) = 104,55	4 = 52.28
Form	381b	D-44	· · · · · · · · · · · · · · · · · · ·	

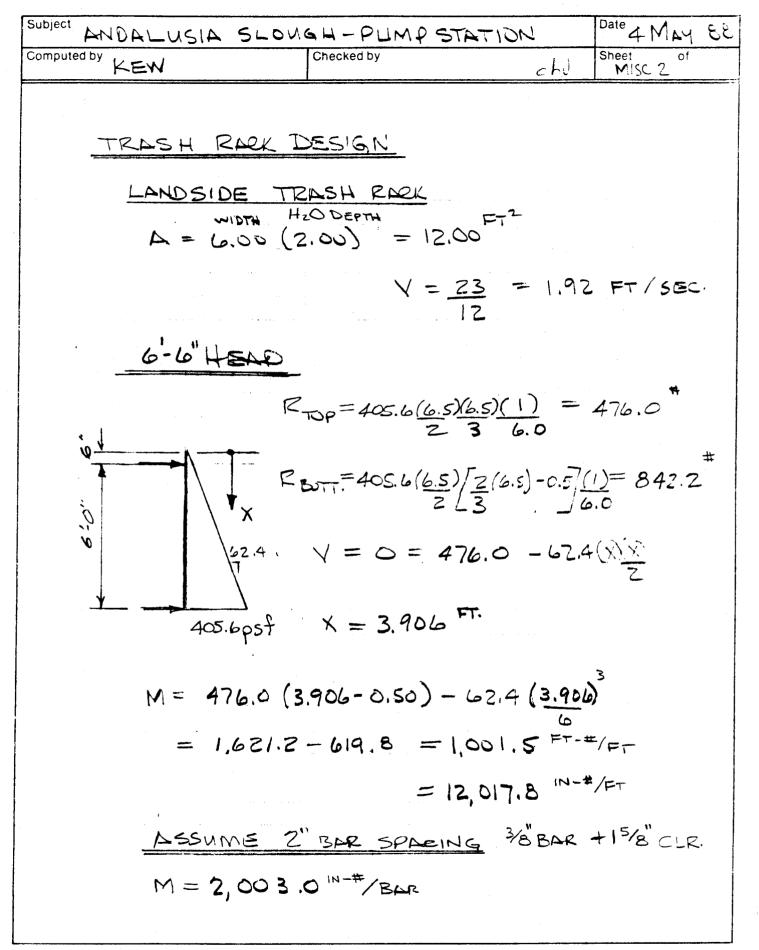
$$\frac{Subject}{Longeleter Level 2015 200 Conditioned by KEW (Theorem of the state of$$

7

)) ()

. Т

SUDJect ANDALUSIA 5	LONGH - PUMP STI	TION	Date 20 SEPT. 8	
Computed by KEV	Checked by	chul	Sheet PF-6	
PILE FOUN	DETICIA DESIGN			
	ONCITY			
PILE CA				
Q = Q u	$\frac{115}{5} - 5.00 = 34.46$	-5.2		
τ.,			TON	
	= 12.23	Ton ~ 12.8	2	
	4	8% UNDER	DESIGN	
			:	
B Form				
ମୁକ୍ତ କରି	D-46			


Computed by KEW TELSH ROCK	Checked by		chul	Sheet of MISC.1
TELSH RDEK				
TELSH ROCK				
	DESIGN			
EM 1110-2-3				_
DESIGN FO	R DIFF	ERENT	IAL HEA	DOF S ^{FT}
DUE TO TE	eash Bl	IILD-UP.		
EM 1110-2-3	02			
BAR SPAR	NG 13/4"	INCLISE	CIEND (3" MAY IE
DHR Sthe			CLERK	JUSTIFIEL,
FLOW THRU				
	<u><</u>	2.5 FT	SEC.	
	_			
PUMPING RN	78 = 1	0,000	GPM	
	=)	0,000	= 1,337	CUL FT/M
		7.48		
		1,337	- 23	CU.FT/S
		00		
RIVER SIDE	TRASH R	ZALLK		
A = 5.00(3.0)				
•				
is 4.5		$\vee = 23$	= 1.49	FT/SEC
		-		
5.1	$48\left(\frac{1.5}{2.5}\right) =$	= 3.089 =+	-	
	$\frac{1}{5^2+2.5^2} =$	- 5.148 ^{FT}		
CR Form				

,

1

)))

•

NCR Form 381b 1 Aug 80

	Checked by		Date 4 MAY 8 Sheet of
nputed by KEW		chJ	Milse 3
TRIEH RIDE	C DESIGN		
+0~ 2"	x 3/8" BAR		
		3	
5 = 3/8	$\left(\frac{3.0}{4}\right)^{2} = 0.562^{4}$	5 IN	
		· · · · · · · · · · · · · · · · · · ·	
$+_{\mathbf{b}} = \mathbf{Z}$	$\frac{003.0}{5625} = 3,561$	psi	
ASSUME	s bar hets as	STEM OF	TEE
i b	= 2.5 = 667 0.375	< 127 = 127	21
mo t	0.375	VFy	
V 18-			
	$\Gamma_{T} = \sqrt{\frac{1}{A}} =$	$\int O(S(\underline{C},\underline{S}))$) -
		0.5 (0.375	·)
m <u>N.</u> A		0.10825	IN
			1
_ <u>+</u>	$\lambda = 8.5$	(12) = 0	142.2
	$\frac{\lambda}{f_{r}} = 8.5$	10825	
AISC 1.5, 1.4,			
510 ×103	$= 119.0 < \frac{\lambda}{\Gamma_{T}};$	$\circ F_b = L$	-MGER_
V Fy	Γ _T · ·	OF	DELOW
		107	17 6 1
$F_{D} = \frac{1}{(l)} \frac{1}{2}$	$\frac{10^{3}}{-} = \frac{170 \times 10^{3}}{(942.2)^{2}}$	- 0.112	. К. Э
$\langle \overline{r}_{-} \rangle$			

,

)

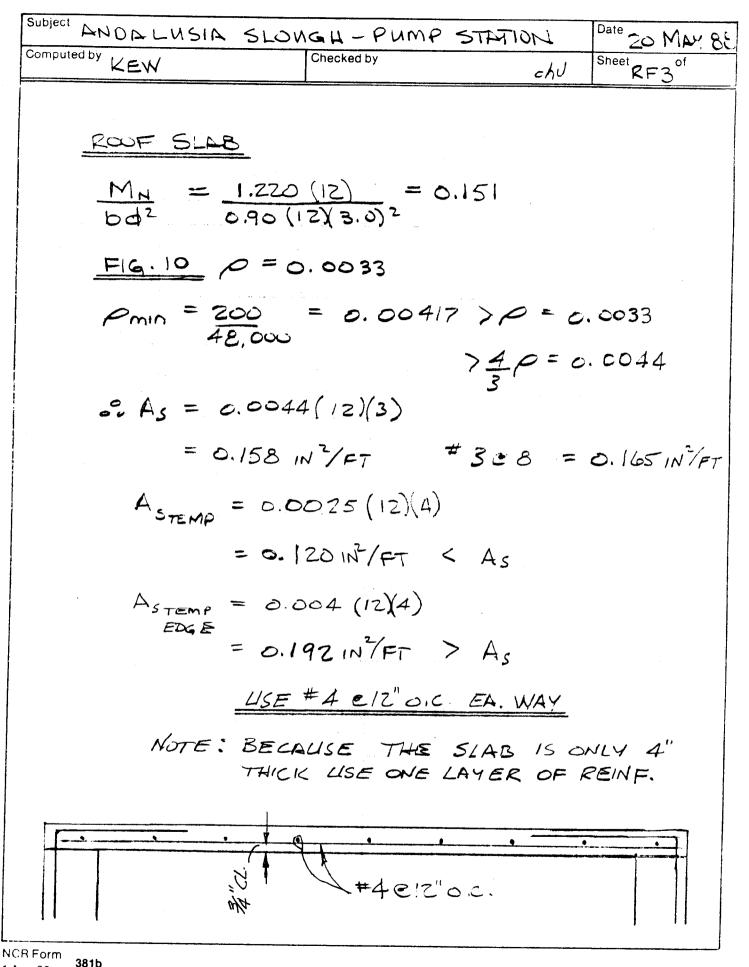
D-49

Computed by KEW	Checked by	STATION	Date 4 MAY 86 Sheet MKC.4
KEW	<u> </u>	chu	MBC.4
TRACH RA	2K DESIGN		
			_
$F_{\rm b} = \underline{12},$	000 = 12,00	22(0.5)(0.	375)
<u> </u>	$\frac{000}{d} = \frac{12,00}{8.5(17)}$	2)(3,0)	
4			5 = 3.561 KS
	- (.) >	SKSI / E	- 3.36 KS
BEARING	BEAM		
	E 1,000 LOAD		\mathbf{N}
AP22NW	2 1,000 1000	NO GUI	de)
M = 1	$(000(6.00)^2 = 4)$	SOO FT/#	
	8		
		- 2	- 11/ 12
 -	$\frac{1}{24,000} = 2.25$		
		c	5= 5,46 m ³
		•	
<i>.</i>			

t

Subject ANDIS-U.	SIA SLONG	AL - PUM	P STETION		Date 41/12
Computed by KEV!		Checked by		chJ	Sheet of MISC.5
					e
SIZE	CONCRE	TE PIP	E		
1. 125	SNME PI	PE EUN:	s hplt-t		
	2E SO TH			THE P	1912
12	LESS THE	EN D.0	et/sec.		
DUNCON	IC PATS		- DN		
+ 0(1) (F II	ig rate =				
	. =	$= \frac{10,000}{448,8}$	= 22.29	B CH.F	T. SEC
		440,0			
PIPE	DIAM				
كَنَ کَ	, _	22.28	= 6.30	FT/SEC.	
	-	$\frac{1}{2}(1.5)^2$			
42"	₽	22.28	= 4.63	FT/SEC	OKAY
		$\frac{\pi}{2}(1.75)^2$			
$4 \varepsilon^{\circ}$	÷	22.28	= 3,55	FT/SEC	. € 1s=
	<u>n</u>	$\frac{22.28}{2}$		·	
540	pe of f	PIPE		\sum	$\frac{d}{D} = 0.50$
5 -	Γορ	7	A (15	$L = 48 - 0^{-3}$
0 -	0.232 D\$	/3		/¥_	
=	[72.28(2	0.015)7 ²	- (0.020	$(7)^2 =$	0.00!28 FT/F
_	0.232 (4	.0)2.667			
				Ξ	C.737 IN 181
	NIL -	- DO NOT	SLOPE	PIPE	
R Form ug 80 381b		D - 51			

}


i

ſ

Subject ANDA LUSIA	SLONGH - PUMP	STATION	Date 20 MAM 8E
Computed by KEW	Checked by	chu	Sheet of RF 2
RODF SLAB	>		
DETERMIN	VE DEPTH OF	SECTION	
			±
$M_{u} = \varphi \rho$	$F_{y}bd_{b}^{2}$ (1-0.59)	$0 \pm y$) fe	
1,220(12) = 0.90(2)	$(a_{b}^{\prime})^{2}$	1-0.5? (0.0	21E3)(<u>48</u>)
1.220(12)= 8.98	$d^2 d^2_b$		
$\mathcal{E}_{b} d_{b} = \sqrt{1}$	$\frac{.220(12)}{.28} = 1.28$	BIN SAY	d = 3 i N
CHECK SH	Eirk		
$V_{c} = Z $	f'e bo		
= 2 V	$\overline{3,\infty}(12)(3) = 3,9$	43	
$\phi V_c = 0.$	85(3,943) = 3,3	$52^{\#} > V_{u}$	= 540#
COMPUTE	REINFORCING		
	TECH. REPORT S		
	DESIGN OF REIN HYDROULIC STRA		
$\frac{h}{0} = \frac{4}{3}$	= 1.33 (=		
$f'_c = 3, \infty$	DKSI AND fy= <	78.00 KSI	
CR Form Aug 80 381b	D-53		

4

b

D-54

1 Aug 80

HYDRAULIC DREDGING - WATER COLUMN DATA

Ŀ

Α

P

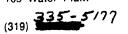
P

E

N

D

1


X

Ε

The University of Iowa

Iowa City, Iowa 52242

Civil/Environmental Engineering Environmental Engineering Dabonatories 105 Water Plant

December 24, 1987

Corps of Engineers Rock Island District ATTN: CENCR-ED-DG (Holmes) Clock Tower Building P.O. Box 2004 Rock Island, Illinois 61204-2004

Dear Mr. Holmes:

Enclosed are the results of the third set of settling column analyses completed in December. Table E-1 is the data obtained using the bulk sample from location 1. This sample was loaded at a concentration of ****** , which is equivalent to 145 grams/liter dry weight. Table F-1 was obtained from the bulk sample from location 2, with a loading concentration of *******, which is equivalent to 145 grams/liter dry weight.

If you have any questions please let me know.

Sincerely

J. Kent Johnson, Ph. D Laboratory Director

Ta	ЪĴ	le	E -	1
----	----	----	-----	---

			SEDIMEN DECEMBE SAMPI	R, 1987			Refe Borng Typ OH We 83	теле 4-87-2 soil 10 ип-ян44
TIME			SAMPL	E PORTS				G
(HRS)	Α	В	C	D	E	F	G	Corrert Mc Yo
0	128.3	129.1	123.2	126.0	123.0	121.4	119.9	796
.5	123.0	118.2	119.6	123.2	114.0	127.7	156.4	
1	124.5	123.4	118.2	128.6	119.8	132.3	181.7	
2	6.3	116.3	115.0	117.6	120.6	174.0	216.0	-
4	1.2	7.4	96.2	114.6	126.6	233.6	232.5	-
6	1.8	2.9	3.2	145.9	248.0	287.0	252.7	
12	0.4	0.4	0.5	0.4	273.0	295.0	263.6	-
24	0.4	0.6	0.5	0.6	283.0	321.0	300.0	296
DAY							i	
2	0.2	0.2	0.2	0.2	0.3	334.1	318.7	<u> </u>
3	0.1	0.1	0.1	0.1	0.2	364.0	374.1	-
4	0.1	0.0	0.1	0.1	0.1	355.5	422.0	
5	0.0	0.1	0.1	0.0	0.1	225.6	★★ - 477	172
10	0.0	0.0	0.0	0.0	0.0	0.3	** 484	169
15	0.0	0.0	0.0	0.0	0.0	0.0	*** ~	-

** SAMPLES WERE TOO CONCENTRATED TO RUN SUSPENDED SOLIDS. THE PERCENT DRY WEIGHTS ARE AS FOLLOWS:

TIME	PORT	PERCENT DRY WEIGHT
(DAY)		
5	G	36.8
10	G	37.2
15	G	32.5

and the second first the second of

E-2

Table E-2 SEDIMENT STUDY DECEMBER, 1987

•

Ł

1

•

1

TIME

SAMPLE 2

SAMPLE PORTS

		Borm	1 A-	87- 2	
		Typ	CL	sot	/
		WEE	31-3	1090	in-situ
		+	Ī	6	
		1		G Viors fin	e
Ε	F	G		Conder	4, 1 - 20
			<u> </u>		· · · · ·

Reference

(HRS)	Α	В	С	D	Ε	F	G	Condort , V	30
0	136.4	132.0	135.2	129.4	133.9	138.4	132.5	717	-
.5	133.8	132.9	i 27. i	124.6	126.0	139.8	141.8	-	ł
1	116.5	128.0	124.0	136.4	130.5	130.1	140.8	-	
2	122.1	124.7	121.9	129.6	126.9	133.6	135.1	-	i
4	104.3	112.8	117.0	126.1	126.8	129.9	201.8	. 	ł
6	0.8	117.4	122.8	124.5	127.1	131.6	247.1		1
12	0.3	0.4	116.7	117.7	120.7	203 1	264.9	· ··· .	
24	0.2	0.3	5.0	15.9	216.5	241.2	297.0	299	
DAY									
2	0.1	0.2	0.2	0.2	241.4	229.2	292.3		
3	0.1	0.1	0.1	0.1	233.8	255.2	300.8	-	1
4	0.1	0.1	0.1	0.1	218.8	226.8	291.1		
5	0.1	0.1	0.1	0.1	221.5	221.8	316.7	278	, F
10	0.0	0.0	0.0	0.0	0.4	260.9	333.2	2.62	
15	* 0.0	0.0	0.0	0.0	0.0	0.0	34 568	139	

* THIS SAMPLE WAS TAKEN FROM THE SURFACE OF THE WATER COLUMN.

** THE SAMPLE WAS TOO CONCENTRATED TO RUN SUSPENDED SOLIDS. THE PERCENT DRY WEIGHT OF THE SAMPLE IS 42.0.

· .

MECHANICAL AND ELECTRICAL CONSIDERATIONS

A

P

Ρ

E,

N

Ð

I

X

F

UPPER MISSISSIPPI RIVER SYSTEM ENVIRONMENTAL MANAGEMENT PROGRAM DEFINITE PROJECT REPORT (R-4)

ANDALUSIA REFUGE REHABILITATION AND ENHANCEMENT

POOL 16 MISSISSIPPI RIVER MILE 462 to 463 Rock Island County, Illinois

APPENDIX F MECHANICAL AND ELECTRICAL CONSIDERATIONS

Table of Contents

Page

Subject

			-
Purpose	and Scope		F-1
General	· · · · · ·		F-1
	Features		F-2
	Sequence		F-2
Electric			F-2

List of Plates

No

F-1 - F-11	Pump Station System Head Calculations
F-12 - F-17	Short Circuit Calculations
F-18	Annual Operating and Maintenance Costs

UPPER MISSISSIPPI RIVER SYSTEM ENVIRONMENTAL MANAGEMENT PROGRAM DEFINITE PROJECT REPORT (R-4)

ANDALUSIA REFUGE REHABILITATION AND ENHANCEMENT

POOL 16

MISSISSIPPI RIVER MILE 462 to 463 Rock Island County, Illinois

APPENDIX F

MECHANICAL AND ELECTRICAL CONSIDERATIONS

) 1

) }

i

)

<u>Purpose and Scope</u>. The purpose of this appendix is to present preliminary design for the pumping station development at the Andalusia Refuge. Pump manufacturers' engineering information for standard catalog units were used to develop the design presented in this appendix. Pump sizing and layout are based on the efficient operation of the station and ease of normal maintenance.

<u>General</u>. One pumping station containing two submersible propeller type pumps is proposed for the Andalusia Refuge. The pumping station will serve a dual function; discharging interior drainage from the protected area to maintain constant water surface elevation during the drawdown cycle; to discharge river water into the protected refuge during the waterfowl migration seasons for the purpose of creating as large a surface area as possible.

The pumping station will be located on the downstream end of the moist soil unit protected from the main channel of the river and associated debris. The pumping station will be constructed integral with the levee river toe section. The levee fill will be placed, allowed to naturally consolidate for approximately three months and then excavated for the pumping station.

Pump units are sized to complete the drawdown period within a two week period. Pump operation will utilize automatic controls for setting and maintaining water elevation within the moist soil unit. The power and control panels will be housed within the pumping station super-structure and will be protected from condensation damage with unit heaters.

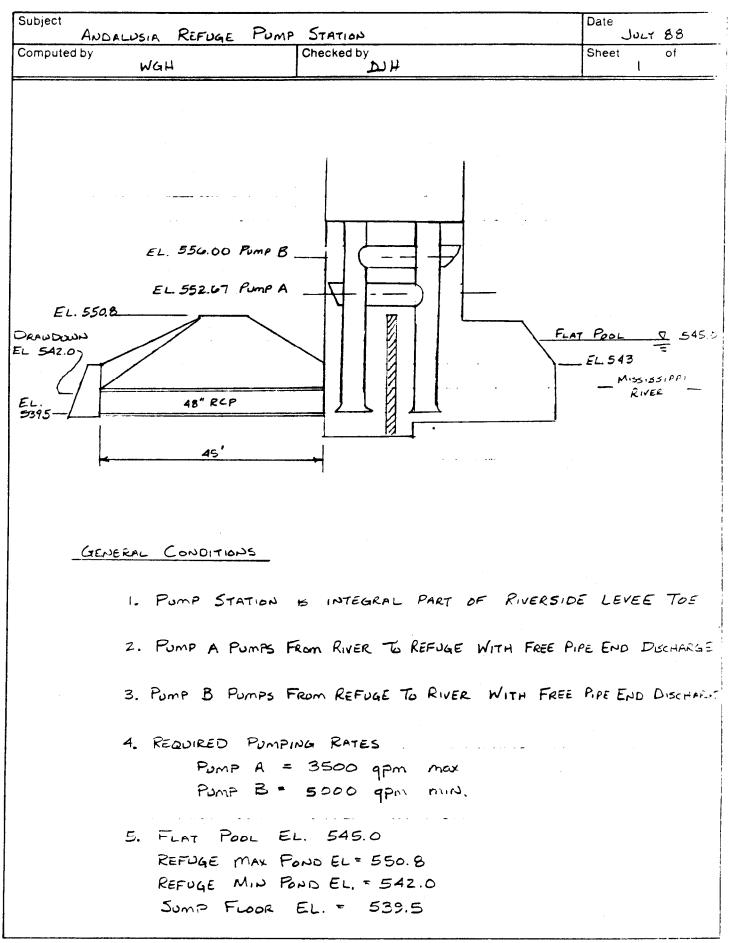
Pump and motor removal can be accomplished through secured sealed manhole accesses exterior of the pump station super-structure. Hand-cleaned trash racks are provided at both intake and discharge ends for maximum protection of the pump impellers against debris. The superstructure will have gravity ventilators and louvers for air circulation. Design of the station is based on the Hydraulic Institute Standards, 13th Edition, 1975, and on applicable sections of EM 1110-2-3102, 03, and 05.

F-1

This station is fed by a new 48-inch Station Features. reinforced concrete pipe from the moist soil unit passing through the levee section and by a pump forebay section from the Mississippi River. A sump divider wall separates the two pumps up to elevation 551.0. A slide gate in the divider wall permits gravity flow between the moist soil unit and the Mississippi River. Stoplog slots will be provided at each end to facilitate sump dewatering for maintenance purposes. Gate closure of the gravity outlet occurs for water management operation, at which time the required pump is energized manually, with further control being automatic through the float system. One 24-inch, 5,000 gpm submersible pump of axial or mixed flow type will be utilized for pumping from the moist soil unit and one 24 inch 3500 gpm submersible pump of axial or mixed flow type will be utilized for pumping from the Mississippi River. Discharge of both pumps will be piped over the sump divider wall into a stilling basin that directs flow by gravity out to the river or moist soil unit respectively. Access to the sump area will be by ladder through removable floor hatches at the operating floor level. System head computations and curves and example pump selections are shown on plates F-1 through F-11. The estimated operating energy cost of \$1200 per year is computed on Plate F-18.

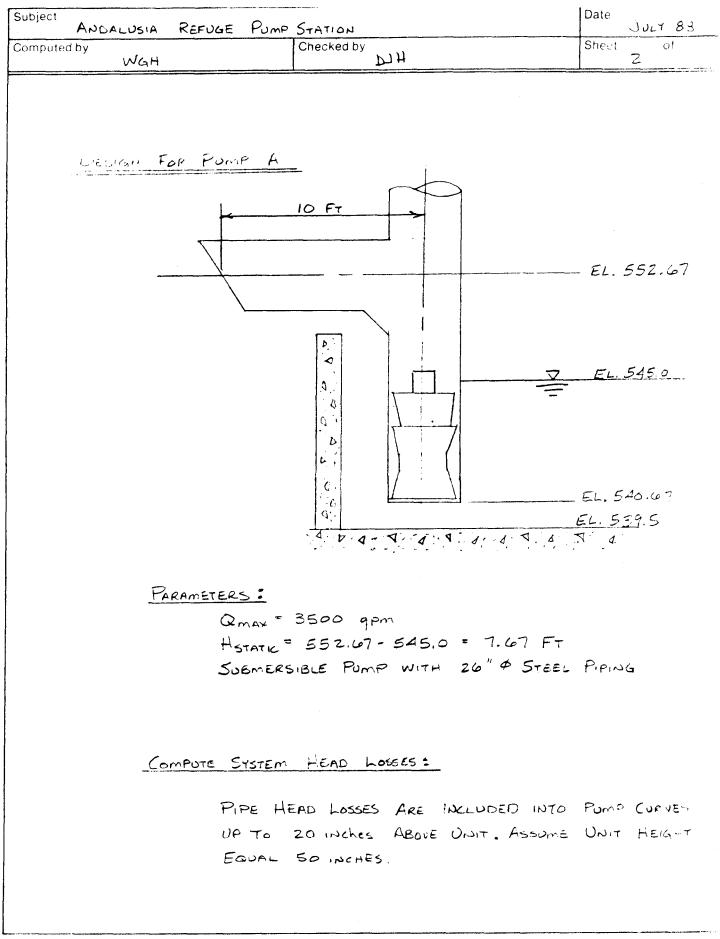
<u>Control Sequence</u>. The sluice gate of the pump station should be operated in an open position except during periods of moist soil unit management by Illinois Department of Conservation personnel. During desired drawdown periods, the sluice gate should be closed and the pump station activated for drawdown purposes. The pump station must be manually activated but will automatically turn off at low water level of 542.0. The float control system will automatically turn the pump on at elevation 542.5 to maintain the 542.0 drawdown elevation.

When it is desired to pump from the river into the moist soil unit, the station must be manually activated and will continue pumping automatically until elevation 547 (which can be adjustable to elevation 550.8, the elevation of the levee overflow). Pumping will be at a slower rate of approximately 3500 gpm to permit a slow filling of the moist soil unit.


Electrical. The two submersible pumps at the station will be operated with electric motors. Power will be provided by the Iowa-Illinois Gas and Electric Company of Davenport, Iowa. Iowa-Illinois Gas and Electric Company has fossil and nuclear generating plants, is interconnected with many other utilities, and is considered to be a very reliable source of power. Two high voltage power systems are available within the area, 13 KV, 3 phase and 7.6 KV single phase. The nearest 13.2 KV, 3 phase connection point is at the switchgear in Illinois City, Illinois, thereby requiring construction of 3-4 miles of new power line. The 7.6 KV, single phase line can be tapped within one-half mile of the site bringing to conclusion that power to the pump station be tapped from the 7.6 KV line, transformed down with a 37.5 KVA transformer to 480 volt and converted to 3-phase, 480 volts using a power phase converter located at the pump station location. The high voltage line will span the ± 150 feet of levee from high ground to the east wall of the pump station. The transformer and power phase converter will be mounted on the pumping station roof. Local ownership of the power service will be on the low voltage side of the transformer near the pump station. The Government, through its contractor, will pay for connection charges including powerline, transformers and power converters, and the Iowa-Illinois Gas and Electric Company will own and maintain the high voltage service.

The pumping station will have pump motor loads of approximately 8 KW and 18 KW and motors of 10 hp and 25 hp, one motor of about 3 hp to operate the sluice gate, and a circuit for one motor of about 3/4 hp for the sump pump. A power control panel will be located within the pump superstructure, will house a 480/240/120 volt transformer for lighting, receptacle and the control circuitry.

۱


1

Short circuit analysis for the station is shown on plates F-12 through F-17. Electrical schematics are shown on plate 22.

NCR Form 381b

PLATE F-1

ł

Subject 🖌	NDALUSIA REFUGE PU	IMP STATION	Date JULY 33
Computed by	WGH	Checked by	Sheet of
		LOCITY = $(3500 \frac{GAL}{min}) \frac{FT^{3}}{7.48 GAL} \frac{7}{\pi}$	4 (min)
	FIPE FLOW VEI	LOCITY = (3500 min) 17.48 GAL (TT	(2.167 FT) & 60 SEC
		= 2.115 FT/SEC	
	, ,	$AD_{Ve1} = \frac{V^2}{2q} = \frac{(2.115^{F} \frac{1}{3})^2}{2(32.2^{F} \frac{1}{3})^2} =$	
	HE	$AD_{Vel.} = 2g = 2(32.2 f_{32}^2) =$	0.069 FT.
	Court Court		
	STSTEM COMPONEN	-	
	FIPE LOSS	$\sim 0.3 \text{ Hy/100 Ft}$ $\mu = (552.67 - 540.67) - \frac{70.19}{12.1192}$	
			10 FT = 16.17
		$W = 0.33 H_V$	
		~ 1.0 HV	
		Loss ~ O. I ty	
	INLET JUN	PLOSS - O.I Hy	
	Torrey Loss E	0.069 (0.3 (16.17) + 0.33 +	
		0.109 FT.	
		0.10 T FT.	
	Tora Dunance HEAR	0= 7.67 Ft + 0.109 Ft =	
			1.10 -
	PUMP SELECTION:		
	·	050, 20 KW, 700 RPM,	4 BLAGE
		5° BLADE ANGLE, CURVE 63	,
		,,	
	Q	= 3500 GPm (7.8 Ft w	ITH E== 70%
	CHECK MAXIMUM RECO	MMENCED PUMP SPEED IN AC	CORDANCE WITH
		DTE STANDARDS & FIG 60	
		~	
	N= JQ	32 20,000 (8) ^{2.15} JE500 ⁷	
	.		,
	N = 1	608 RPM > 700 RPM	0.K.

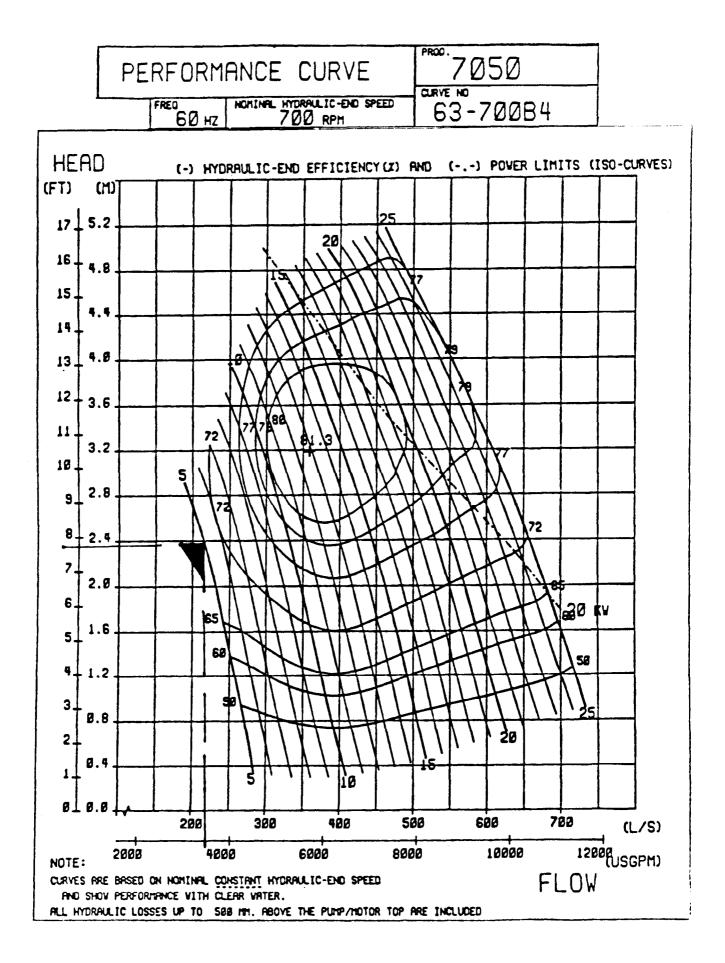
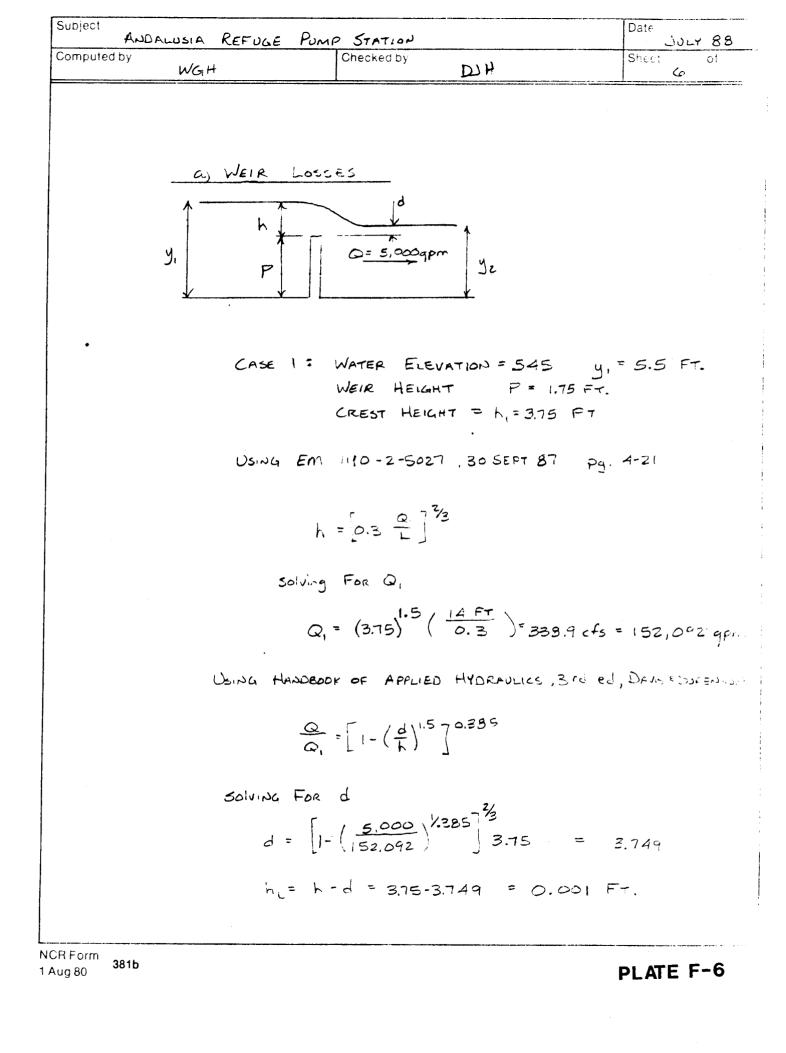



PLATE F-4

ubject Avi	DALUSIA REFL	IGE PUMP STATION	Date JULY 8
omputed by	WGH	Checked by	Sheet of
	Cart	2: WATER ELEVATION = 5.42	
		Weir Height = $P = 1.75$ FT.	
		CREST HEIGHT = n = C.75	
		$Q = (0.75)^{1.5} \left(\frac{14 \text{FT}}{0.3} \right) = 30.31$	cfs = 13,603 gpm
		$d = \left[1 - \left(\frac{5,000}{13,603}\right)^{1/.385}\right]^{2/3} 0.75$	= 0.712 FT
		h_= h-d = 0.75-0.712 =	= 0.038 FT.
	b. TRASHEREN	LO35E5	
	CONTR	OLING CASE IS WHEN REFUGE =	EL. 542.0
	E	LEVATION ENTERING TRASHRACL = 5	42 - 0.25 = EL.5+"
	√-	$\frac{11.14}{(6 \text{Fr})(541.75-539.5 \text{Fr})} = 0$.825 F7/5
	<u>V</u> 22	$\frac{2}{3} = \frac{(0.825 FT/s)^2}{64.4 FT/s^2} = 0.011$	FT
	Н	$L_{T,R} = 0.1 \frac{V^2}{Zg} = 0.001 \text{ FT}.$	
D F =			
R Form 381b			PLATE F-7

)

Subject	ANDALUSIA REFUGE	PUMP STATION	Date Joly 82
Computed by		Checked by	Sheet of
	WGH	Hrd (8
	C. REINFORCED FRI		
	C, REINFORCED TRA		
			D= 4 FT
			d = 541.75-539.5 = 2.2
		à	Q = 5,000 gpm
•		_	L= 45 FT.
	Check for c	critical depth REF. E	EMILIO-2-1602 , PLATE I
	For Q	= 11.14 cfs , D= 4 F	-+-
		•	
	Ч	$y_{\rm D} = 0.345$	
		ye= 0.345(4) = 1.3	3 Fr
	Sinte	ye < d , SUBCRITICE	
		ye - a , SUBCRITICA	al Flow O.K.
	Check AREA	PEC - DS D	DEPT OF INTERIOR BUREAU OF
	CACCE AREA		
			AIMATION - HYDELOLK EKKAN
	AT Ye	$D = \frac{2.25}{4} = 0.563$.ES
	tor ()= -4 - 0.563 2 = 1.7505 (4) ^{2.5} = 56,0	
	Ċ	Q = 1.7505(A) = 56.0	-
	h	v = 0.2296(4) = 0.918	4 FT : V= 7.6906 f;
		Q 56.018	_
	AND A	$=\frac{Q}{V}=\frac{50.018}{7.6900}=7.2$	28 FT
	COMPUTE VELC	DCITY ACTUPL	
		0 11 14	
	V- -	$\frac{Q}{A} = \frac{11.14}{7.78} = 1.5$	3 fps
	•		
			. 75.7
		$P_{ERIMETER} = R \left[\pi + \frac{2}{180} \right]$	$(\sin^{-1}\frac{.25}{2})=1.0798\pi R$

1 Aug 80 381b

) }

•

PLATE F-8

Subject Anderweise Refere Purp Station
Compared by WGH Checked by DIH Statig of Stations
R = APEA
R =
$$\frac{APEA}{VL, PERIMETER}$$

R = $\frac{7.28}{1.0798}\frac{5r^2}{7(2Fr)} = 1.073$ FT
USING MANNING EQUATION
 $n = 0.013$ For Concrete Pipe
 $\mu_{L} = S = \left(\frac{nV}{1.49}\frac{3}{72}\right)^{2} (45 \text{ FT})$
 $\mu_{LPPR} = \frac{(0.03.11.53 \text{ FT})^{-72}}{(1.49(1.073 \text{ FT})^{2})} (25 \text{ FT})$
 $H_{LPIRE} = 0.007 \text{ FT}.$
 $d_{1}e_{1}f_{1}g_{1}$ Compare Pump Associated Losses
Pomp Pipe Velocity = 11.14 $\frac{FT}{5} \times \frac{4}{\pi(2.167 \text{ FT})^{5}} = 3.02 \frac{FT}{5}$
 $H_{VEL} = \frac{V^{2}}{2} \frac{(5.02)^{2}}{(2322)} = 0.142 \text{ FT}.$
Pipe Loss $\sim 0.3 \text{ Hy}$
EX.T $\sim 1.0 \text{ Hy}$
 $H_{VEL} = Surp T 0.2 \text{ Hy}$

NCR Form 1 Aug 80 381b

1

•

٠

1

1

Subject ANDA	LUSIA REFUSE	PUMP STATION	<u></u>	Date JULY 8
Computed by	NGH	Checked by	460	Sheet of
				1.0
	PIPE	LENGTH = 556 - 50	40.67 - 12 + 10 FT	= 19.50 FT
	. 1	, . 19	1.5 \	\
	HL.pump	$= 0.142 (0.3) (\frac{19}{10})$	0)+0.33+1.0	+ 0.2)
	H	pump= 0.225 FT	-	
	COMPUTE S.	ISTEM LOSS		
	HL	itst. = H _L weir + H _L	T.R. + HLpipe + H	+ L pump
	HL.	SYST. = 0.038 FT +	0.001 FT + 0.007 F	+ + 0.225 F-
	Ц	545TEM = 0.272 F		
	՝ ` ∟ ነ	SYSTEM D. ZIZ	- 2.	
	Pime TI	DH = 14 + 0.272	= 14 272 ET	
	PUMP SEL	ECTION :		
	FLY	GT - 7050,20		
			ANGLE, CURVE	
		Q= 5,000	gpm @ 14.2 Fr. e	77.% et
	CHECK MAXIM	um RECOMMENDED	PUMP SPEED	
		$N = \frac{N_{s} H^{32}}{\sqrt{Q}} = \frac{15}{15}$,000 (14.3FT) 0.75	
		N= Ja =	5,000	
		N= 1,560 RF	m > 700 RPm	0.K.
R Form 381b				

1 Aug 80 381b

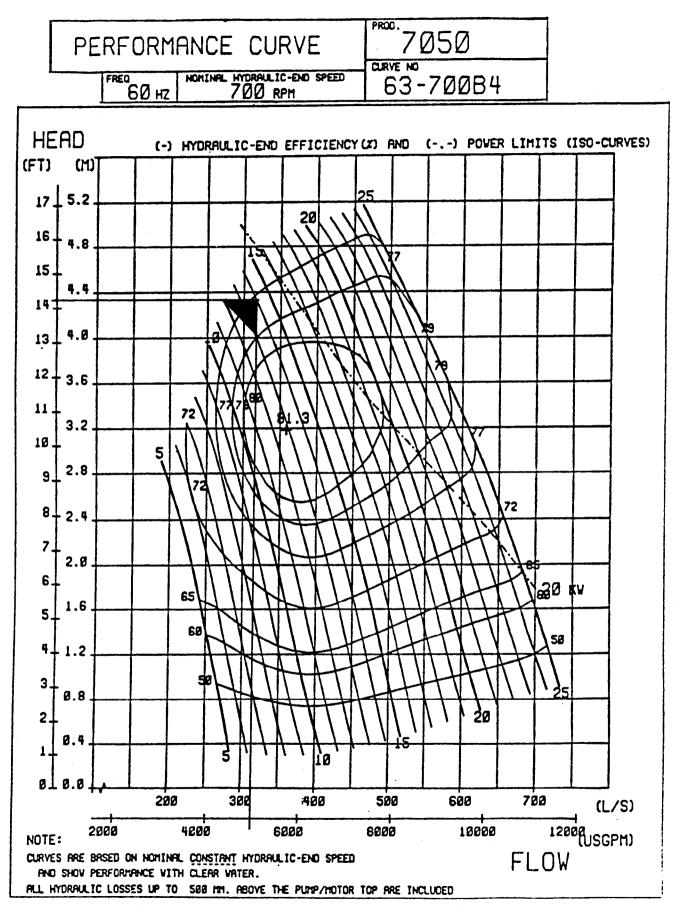


PLATE F-11

ubject AND	ALUSIA REFUM	E PUMP STATION		Date کیں ل 88 میں ل
omputed by	WGH	Checked by	ען און און	Sheet of
		<u> </u>	ין ע	12
		LOAD STUDY		
	FXISTIN/	POWER SYSTEM - 1	HIGH VOITHAE T	20 4017 10
		ATION SYSTEM - SEC		,
	SUBMERSIB	LE PUMP LOAD REQUI	REMENTS	
	F	UMP A = 7.4 KW	= 10 H.P.	
	P	UMP B = 17.4KW =	= 25 H.P.	
	Assume (ONLY ONE WILL BE	Pumping AT ANI	GivEN Time
		17.4(1000)		
	I	$L = \frac{174(1000)}{480\sqrt{3}(.95)} =$	22.0 FmP	
	Given 0	a 25 HP Motor on	THE POOP	
	Т	= 34 AMP	NEL TABLE	120-150
	-			
	Size Bran	CH LIRCUIT CONDUCTOR	FOR FUMP B	NEC TABLE RID
		$E_{FL} = (34)(1.25) = 4$		
	SIZE BRANC	LA CIRCUIT CONDUCTOR	For Pump A	(10 H.P.)
	I	FL = 14 AX(1.25) = 17.	5 amp SELE	CT # 12 J=2
	_			
	POWER RED	QUIREMENT FOR PL	MP B	
	17	16) 25 HP)(1.25) =		
	(14	10 x 25 MF J(1.25) -	23.3 KVA	

NCR Form 1 Aug 80 381b

.

1

1

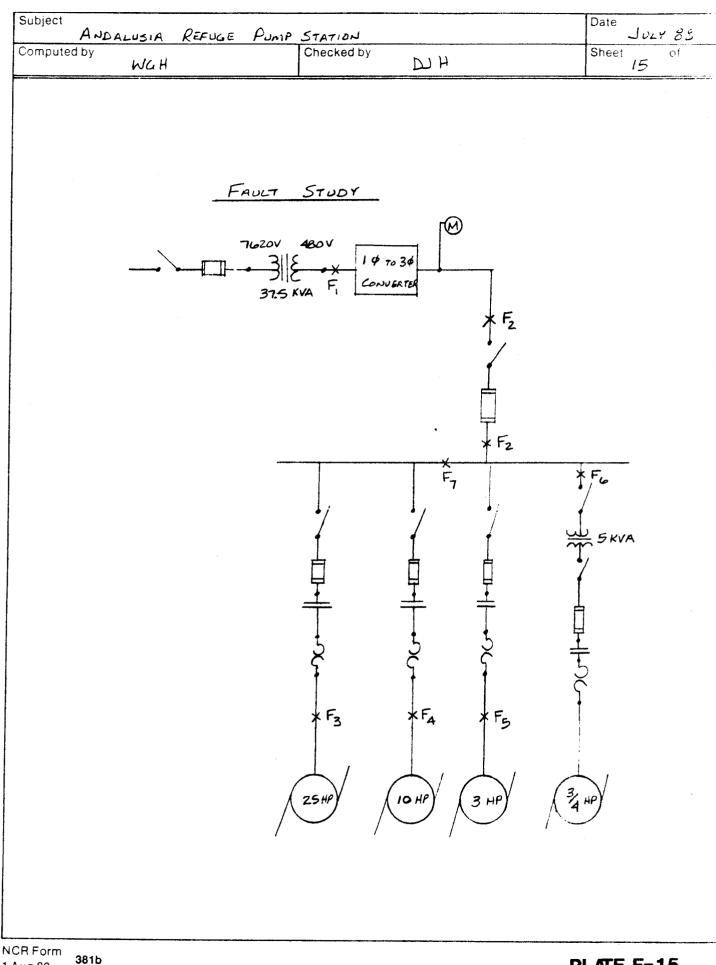
)

Subject	Δ	0			Date
Computed by	ANDALUSIA	KEFUGE	Checked by		Sheet of
Joinputed by	WGH		Checked by	DJH	13
	5	³ /4 I _L = USING USING IE BRANC IFL COWER REL	(U.75 HP) (1000 (240 V) (0.65 NEL TABLE H CIRCUIT CON = (6.9 A X 1.25) QUIREMENT FOR	5,240 V, 1#,) = 4.8 A = 4:30-148 = 2:30-148 = 2:3	P PUMP Sélect # 12 Awg
	<u>ح</u> رم، د	E GATE HSEUM 3	LOAD REQUI		V, 60 HZ, 1200 F
				3LE 430-150	
		IFL	-	e^{0} $(e^{0}) = (e^{0}) = (e^{0})$	select # 12 Awg
				= 2.8 KVA	

1 Aug 80 381b

'

J


F F

ļ

,

PLATE F-13

Subject Adas	LUSIA REFULA	PUMP STATION		Date July タ
Computed by	WGH	Checked by	ни	Sheet of
	DETERMINE	TRANSFORMER SIZI	E	
	LOACMA	× 23.3 KVA T	0.7 KVA + 2.8 KVA	= 26.8 KVA
	CHOOSE	A 37.5 KVA ,	Ι Φ	
	DETERNINE SI	ZE OF MAIN	BREAKER OF FUS	Ē
	I = 2.5	$(34 Amp) + \frac{4}{2}$	BA 3 + 4.8 A	
	I = 9	z Amp	•	
	Сноозе	150 F Eus		
		100 A BREAKE		
		3- TE ANG MAIN	FEEDER WITH #	GANG GRD.
RForm				

ANDALUSIA	REFUGE PUMP STATION	Date July 85
omputed by WGH	Checked by	Sheet of
500	m BASE - 500 MVA	
	B FEEDER - 3-#8 AWG	
	C= 1230	
	R = 0.778 ohm / FT × 103	
2		
Punp	A FEEDER - 3 # 12 AWG	
	C = 617 R= 1.98 ohm/FT × 10 ³	
	R- 1.70 0Km/r/200	
Sump	SLUKE FEEDER - 3 # 12 AWG	
	C = 617	
	$R = 1.98 \text{ ohm} / \text{FT} \times 10^{3}$	
Bos	FEEDER - 3 = 3 AWG	
	C= 3830	
	$R = 0.245 \text{ ohm}/\text{FT} = 10^3$	
-		
Z	TRANSFORMER = 2%	
AT F		
	Isc = (37.5 KVA Y 1000) Isc = 480 (0.02) = 3906 A	AMP AT TRANSFORT SECONDA
	$f = \frac{1.73 LI}{CV} = \frac{1.73(50)(3906 A)}{3830(480)}$	- 01838
A1 52	$T^{-} \subset V$ 3830(480)	- 0.1050
	$I_{F_2} = 3906 \left(\frac{1}{1+0.1838} \right) = 3$	300 Amp
	$f = \frac{1.73(20)(3300 \text{ h})}{(480)(1230)} = 0.1934$	A
AT F3	+ = (480)/1230) = 0.1934	4
	T	
	$I_{F_3} = 3300(\overline{1+0.1934}) = 27$	65 AMP

ubject Avo	ALUSIA REFUG	E PUMP STATION	Date المل ل
omputed by	WGH	Checked by DJH	Sheet of
		173(20)(3300A)	
	AT F4	$f = \frac{1.73(20)(3300A)}{(480V)(617)} = 0$	0, 3855
		$I_{F_4} = 3300 \left(\frac{1}{1+0.3855} \right) =$	
		$\mathcal{I}_{F_{A}} = 3300(1+0.3855)$	2382 Amp
	AT FG	$f = \frac{1.73(20)(3300 A)}{(480 V)(417)} = 0$	0.3855
	2		
		$I_{F_{5}} = 3300(\overline{1+0.3855}) =$	2382 Amp
		~	
		$f = \frac{2(10 FT)(3300)}{480(417)} = 0.$	
	AT F6	480 (617) 0.	2229
		IF, = 3300 (1+C.2229) =	2700 4000
			2100 414
C	ONCLUSIONS - 1	ALL EQUIPMENT SHALL BE RAT	ED FOR 10,000 AMP

1 Aug 80 381b

•

i.

bject AvDA	LUSIA REFU	GE Pur	P STATK	5			Date Ju	. 88 1
mputed by	WGH		Checked b	у	HLA		Sheet 18	of
Ритр	STATION (DRAINAGE	AREA =	925 A	CRE				
	STATION C							
	STATION C	APALITY	PUMP .	8 = 5,00	o gpm =	22.5 AC	ere Ft;D	ρY
Time Period	OPERATION	Pump	INITIAL VOL. Acre-Ft		RUNOFF C=.5 (ACRE FT)		EVENT VOL. (ALRE-FT)	-
JUNE	DRAWCOWN	в	42	4.32	166.5	- 16.8	Z.1 *	193
JULY	DRAWDOWN	B	0	4.88	188.1	- 17.5		172
Aug	Drawdown	B	0	3.76	144.9	- 14.9	2.1 *	132
					•		SUB TOTAL	498
SEPT	FILL	4	180	3.74	- 288,3	38.5		<
OLT	FILL	4	0	2,70	-203.0	33.5		6
Nov	FILL	A	0	2.16	-166.5	38.5		Ċ
							SUETSTA:	. (
	me 15 B ase s Diring A S <i>ec</i>						NING EL.5	50.2
	B RON. TIME A RUN TIME			• • • • •	_			
POWER	REQUIREMENT	r - As	SUME 5	HR RUN	TIME FOR	MAINTENH	LE & TESTIN	14 / 7 F
	P=(17.4	К Ш) 53	2+5 4	(R) + 7.	4 KW) 0	+ 5 ^{HR} /4R)	= 9,379	3 KW
	Pheaters E	CANTROLS	(0.3 к	w)(24 HB	5AY 365 DA	$(\gamma_R) = 2$,628 KW	= /Yr
Auera	GE OPERATIN	И Собт	= (9,3	378 KWH YR	* 2,628	WH) (\$0.0	293/кшн)	
	OPERI	ATING CO	кт = \$	1,117.0	50/4R.	SAY S	\$ 1200 / J	F

SEDIMENTATION STUDY

A

P

P

Ε

N

D

I

X

G

UPPER MISSISSIPPI RIVER SYSTEM ENVIRONMENTAL MANAGEMENT PROGRAM DEFINITE PROJECT REPORT (R-4)

ANDALUSIA REFUGE REHABILITATION AND ENHANCEMENT POOL 16 MISSISSIPPI RIVER MILES 462 TO 463 ROCK ISLAND COUNTY, ILLINOIS

APPENDIX G SEDIMENTATION STUDY

A sedimentation study was conducted to evaluate sedimentation in Dead Slough and in the Refuge area during the period 1936 through 1987. The scope of this study, as presented in this appendix, consisted of determining net erosion from 1936 (pre-lock and dam) through 1987, estimating annual adjacent watershed erosion/deposition, evaluating estimated river source sedimentation, and evaluating proposed project impacts on sedimentation.

Baseline elevations were established from 1936 plane table topographic maps. Additional sections were taken by survey crews during 1987. Eleven ranges were used to construct cross sections of this area. Elevations in 1936 were compared with present elevations in 1987 to show net changes in elevation. Table G-1 provides a summary of net sedimentation.

The two predominant sedimentation sources are the Mississippi River and upland erosion. Adjacent watersheds were studied to estimate approximate soil loss from these areas. Estimates were derived from the Universal Soil Loss Equation, reference: <u>Predicting Rainfall Erosion Losses</u>, USDA, Handbook Number 537, December 1978. Estimated adjacent watershed erosion is presented in table G-2.

TABLE G-1

		Total Sediment Deposition in Andalusia Refuge & Dead Slough 1936-1987		Deposition Below Elev	ngh Sediment 1, 1936-1987 Vation 545.0 Nat Pool)
Range	Station	Average Depth, Ft	Average Annual Depth, In/Yr	Average Depth, Ft	Annual Average Yr
A B C D E F G H I J K	15+15 23+75 30+75 38+25 45+75 2+75.15CE 4+55.62CE 8+88.12CE 12+70CE 16+16.26CE 20+75CE	2.1 2.3 2.5 1.7 1.7 2.2 2.3 2.4 2.5 2.2 2.2	0.49 0.54 0.58 0.40 0.40 0.53 0.54 0.56 0.58 0.52 0.52	2.9 3.8 2.7 3.9 4.2 - - -	0.68 0.90 0.63 0.91 1.00 - - - -
OVERALL		2.2	0.52		0.82 in/yr

Andalusia Refuge and Dead Slough Total Sedimentation

TABLE G-2

			Watershe ross Ero		Delivery	Sediment Yield 2/		
Watershed	Area, <u>Ac</u>	<u>T/Ac/Yr</u>	<u>T/Yr</u>	<u>Ac-Ft/Yr</u>	Ratio 1/	<u>T/Yr</u>	<u>Ac-Ft/Yr</u>	
А	519	13	6,800	3.9	.55	3,700	2.2	
В	774	16	12,000	6.9	.55	6,600	3.8	
С	208	10	2,100	1.2	.65	1,400	0.8	
D	1,152	13	15,000	8.6	.48	7,200	4.2	
Total	2,653	-	35,900	20.6	-	18,900	11.0	

Estimated Sediment from Adjacent Watersheds

1 Reference: "Sediment Delivery Ratios vs. Drainage Area," USDA, Soil Conservation Service, drawing number 5, N-30,509, dated October 1970.

 2 Sediment Yield = Gross Erosion x Delivery Ratio. Sediment yield is the portion of the gross watershed erosion that actually reaches the watershed mouth.

Net river sedimentation was estimated by subtracting the adjacent watershed sedimentation (table G-2) from the net sedimentation (table G-1). Results of this comparison and potential reductions in sedimentation due to proposed project features are presented in table G-3.

TABLE G-3

	Existing Co	nditions	Sediment Reduc Andalusia Refu Proposed Pr	ge Due to
Sedimentation Source	<u>Ac-Ft/Yr</u>		<u>Ac-Ft/Yr</u>	_%
Adjacent Watershed	11.0	64.7	4.2	24.7
River	6.0	35.3	0.0	0.0
Net	17.0	100.0	4.2	24.7

)

;

ł

Comparison of River Versus Upland Erosion Sedimentation

ILLINOIS DEPARTMENT OF CONSERVATION FISHERIES INVESTIGATION OF DEAD SLOUGH

ŧ

А

P ·

P

Е

N

D

I

X

H

MISSISSIPPI RIVER INVESTIGATIONS	County Rock Island Location from nearest town 7 mi. West of Andalusia
	DateMay 16, 1988
Station Sampled Dead Slough/Andalusia	Pool No. or Name 16
Refuge Stations Location in River Miles 462.4	
UMRCC Habitat Classification: Tailwater	Lake X Pond Side channel Slough X
AM Time Temp, Rec. 1:40 PD Temperature: Air	
Water Color Clear Sky(weather) Cl	oudy Wind W-15mph
Turbidity: Secchi To bottom = 1.5' :	Cause:
Chemistry: pHAlkalinity137	Other Cond: 580 DO: 11.2
Water Level: Low X Normal	HighFlood
Velocity(ft./sec.) 0 Max. Depth 18 Max. Width 100 yds. Min. Width 100	<u>Avg. Depth</u> 12" yds. Avg. Width 100 yds.
Bottom types(%): Silt(muck) X Sand Grave	LRubbleBouldersBedrock
Type of Shoreline(%): Gravel barSandba Steep Mud bank_100_Other	
Aquatic Vegetation(% & type): 95% coverage	potamogeton
Fish Habitat available: Brush X Logs Pile dikes Gravel Rip rap Other	X Stumps X Rock dikes Aquatic vegetation
Recent Angler Success No Access	
Fish Population Analysis: Bag Seine Hauls (Si Hoop Net (No. Size Hrs.Set); Trap Gill Net (No. Size Hrs. Set); Tramm Electro-Fishing (Time 1:30 AM 45 min Toxicant (area treated	Net (No
Fish condition: Some fin rot and lerneag	
Fish Diseases:	<u>Jeresser poor condicton</u>
Observed by Number of species collected 10 not collect	ed
Pollution	
Fisherman usage No Access	
	olved Dan Sallee, Ed Walsh Date of Report 5/16/88
	-1

))

ł

ł

ILLINOIS DEPARTMENT OF CONSERVATION DIVISION OF FISHERIES

COUNTY ____ Rock Island

WATER (NAME) Miss., Dead Sl/Andalusia Ref.

FISH POPULATION ANALYSIS

(Condition factor & Length-Frequency Summary

DATE OF COLLECTION ____5/16/88

Species	14 " Group	Number	Percent of Total	Weight	Condition Factor	Rating
Short nose gar	553	1	100%	540		
Bowfin	663	1	100%	2300		
Gizzard shad	274	1	12.5	230		
	281	1	12.5	250		
	282	1	12.5	250		
	286	1	12.5	220		
	312	1	12.5	370		
	322	1	12.5	300		
	336	1	12.5	480		
	377	· 1	12,5	520		
		8	100%			
<u>Central mudminr</u>	now	1	(Preserv	ved)		
Carp	114	1	12.5	30		
P	157	1	12.5	90		
	171	1	12.5	90		
	171	1	12.5	90		
	177	1	12.5	90		
	233	1	12.5	250		1
	477	1	12.5	1180		
	616	1	12.5	2850		
		8	100%	-		
		<u>_</u>	100%			
	······································	····			1	1
ampling Time Involve		D. Math		Carton	electofishi	no
iologist: <u>Dan Sa</u>	1166		Date of Re	port:5/	16/88	

FISH POPULATION ANALYSIS

(Condition factor & Length-Frequency Summary

Species	₩ "Group	Number	Percent of Total	Weight	Condition Factor	Rating
Golden shiner	67	1	16.6			
	73	1	16.6			
	88	1	16.6			
	89	1	16.6			
	92	1	16.6			
	95	1	16.6			
		6	100%	-		
mallmouth	132	1	16.6	30		
buffalo	138	1	16.6	40		
1	145	1	16.6	50		
	147	2	33.3	100		
	165	1	16.6	70		
		6	100%			
luegill	65	1	2.5			
	73	1	2.5			
	77	1	2.5			
	78	· 1	2.5			
	82	1	2.5			
	84	1	2.5			
	93	1	2.5			
	96	1	2.5	20		
	97	1	2.5	20		
	101	1	2.5	20		
	103	1	2.5	20		
	105	1	2.5	20		
	106	1	2.5	25		
		(contin	ued on next	page)		
ling Time Involved						ing
ologist: Dan	Sallee	······································	Date of Rec	ort:5/16	5/88	

COPIES TO: If State or Public — District, Area & Central offices. All Others — District Office Only.

Rock Island COUNTY ____

WATER (NAME)^{Miss., Dead Sl/Andalusia Ref}

DATE OF COLLECTION _______

ILLINOIS DEPARTMENT OF CONSERVATION DIVISION OF FISHERIES

ILLINOIS DEPARTMENT OF CONSERVATION DIVISION OF FISHERIES

FISH POPULATION ANALYSIS

(Condition factor & Length-Frequency Summary

COUNTY Rock Island

WATER (NAME)Miss., Dead Sl/Andalusia of.

DATE OF COLLECTION _____5/16/88

Species	1/2 " Group	Number	Percent of Total	Weight	Condition Factor	Raling
Bluegill	107	1	2.5	25		
continued)	108	2	5.0	60		
	109	1	2.5	30		
	115	1	2.5	40		
	118	1	2.5	40		
	126	1	2.5	40		
	134	2	5.0	120		
	137	1	2.5	80		
	148	1	2.5	90		
	152	1	2.5	100		
	153	3	7.5	285		1
	155	1	2.5	100		
	156	1	2.5	100,		
	158	1	2.5	100		
	160	1	2.5	100		
	166	2	5.0	230		
	167	1	2.5	130		
	172	2	5.0	310		
	178	2	5.0	310		
	212	1	2.5	260		1
		40	100%			
argemouth bass	170	1	50.0	60		
	251	1	50.0	280		
		2	100%			
				· · · · · · · · · · · · · · · · · · ·		
npling Time Involved	j : <u>45 min</u>	· Meth	od of Collection:	Cartop	electrofish	ing
logist: <u>Dan S</u>					/16/88	
PIES TO: If State	or Public — Di s — District O	strict, Area & C	entral offices.			

ILLINOIS DEPARTMENT OF CONSERVATION DIVISION OF FISHERIES

FISH POPULATION ANALYSIS

(Condition factor & Length-Frequency Summary

COUNTY Rock Island

DATE OF COLLECTION _____5/16/88_

WATER (NAME)^{Miss., Dead Sl/Andalusia Ref.}

Species	₩ Group	Number	Percent of Total	Weight	Condition Factor	Rating
lack crappie	144	1	20.0	40		
	233	1	20.0	200		_
	243	1	20.0	240		
	255	1	20.0	250		
	267	1	20.0	300		
		5	100%			
	· · · · · · · · · · · · · · · · · · ·					
	······································					
	····					
	· · · · · · · · · · · · · · · · · · ·					
			1			
					<u></u>	1
······································						
					<u> </u>	
		······································				1
· - · · · · · · · · · · · · · · · · · ·						1
		<u></u>				1
						1 .
					<u></u>	
ing Time Involve	d:45 min	· Meth	od of Collection:	Cartop e	lectrofish	ing
	Sallee		Date of Rep		/88	
PIES TO: If State (All Other						

WATERFOWL OBSERVATION DATA FOR ANDALUSIA REFUGE

A

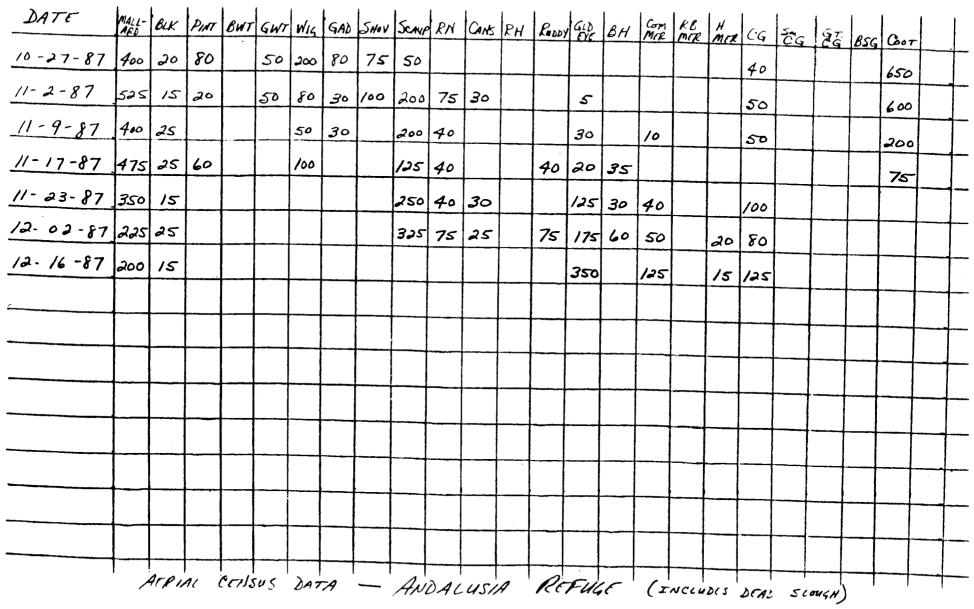
Ρ

P

E

N

D


· 1

X

Ι

The following waterfowl observation data originates from annual U.S. Fish and Wildlife Service aerial census counts made along the Upper Mississippi River. The records for Andalusia refuge are incomplete since during some counts the refuge area was not separated from other locations in Pool 16. Previous to 1987, Dead Slough was not included in the count since it was not part of the refuge until 1987.

۱

I-2

- - - -

DATE	MALL- AFD	BIK	PINT	BWT	GWT	WIG	GAD	SHOV	SCANP	RN	Cants	RH	Rubby	GID.	BH	Com Mile	RB	H	ĊG	ÉG	ST.	RSG	Goot	BAL
1-5-84	0			·																	<u>L</u> <u>G</u>			
2-20-84	30													50		15				1				2
3-5-84	175	15												75		20			25					
3-21-84	500	40							225	75				80		40			50					3
4- 11- 84		NO	CET	usus	•																			
9-4-84	40			60																				
9 - 11 - 84	125			200	50	50																		
10-29-84		10			125	80																	350	
11-5-84	200	10				60			30														150	
11-12-84	200	20				60																	75	/
11-20-84	80	5							60	30				40		15								- <u>-</u>
11 - 26 -84	125	10												15										2
12-3-84	125	15												30		10								<u></u>
2-10-84	40																		 	<u> </u> − -				<u> </u>
																				<u> </u>				

-

DATE	MALL- ARD	BLK	PINT	BWT	GWT	WIG	GAD	SHOV	Scarp	RN	Cants	RH	Ruddy	GLD	вн	Mire	KB MCR	H MER	(·G	ćq	GT. CG	BSG	Got	
10-17-83	35																							
10-25-83	150	10							40						 					 			60	
11- 1- 83	N		CEN	545	/	EAU	y	RAIN	/											 				
11-8 -83	75	10			30				30												ļ		25	
11-14-83	200	10	ļ			75			50						 			 					25	1
11-21-83	100	5		┨				<u> </u>													 			/
11-29-83	80	10					<u> </u>	ļ												 				1
12-8-83	25	 		ļ		 					 	ļ		10	.			ļ						_
•••		<u> </u>								ļ							<u> </u>							 ,
<u></u>								ļ	<u> </u>		ļ		 		╂						 			
		<u> </u>			<u> </u>				ļ	ļ								_			_			
		<u> </u>		<u> </u>				<u> </u>	 			 			_									
	1						<u> </u>	<u> </u>			 													
			<u> </u>					<u> </u>	 		<u> </u>		 		<u> </u>					<u> </u>	4			
					<u> </u>		<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>			 	_							

	DATE	MALL- ARD	BLK	PINT	BWT	GWT	Wig	GAD	SHOV	Scarp	RN	Cans	RH	Ready	GLD. EYE	вн	Mar	RB	H Met	(·G	ćg	GT. CG	BSG	Coot	EAL
	1-3-83	60													25		5								1
	3-1- 83	225	10					 	 	60	30				75		20								2
	3-7- 83	275	20			 				350	175	60		40	5					50					4
	3-14-83	600	30				50	ļ		650	325	80	40		100	 	30	 		50				75	
	3-22-83	325	20						<u> </u>	275	150	50	25		75	 	30				 	 	 		2
	3-28-83	800	30			_	175			650	275	175	75		40	35	25		 		 	 		100	2
	4-4-83	700					30	 		650	275	80	150		25	20	10			 	 	 		500	2
⊣ л	4-11-83	250	10							900	375	150	50	30	125	ļ	40	 						750	1
л	4-25-83	60]		 	25			125	50			15	30		10		 			 		250	
	9-6-83	25			60											 			 		<u> </u>	 			
	9-13-83	50		<u> </u>	80	30	<u> </u>									_	 		ļ		-				
	9-19-83	80			50							 	ļ	 			 			 	<u> </u>	 		25	
	9-26-83	60			30	,							 	 	 	<u> </u>								20	
	10-3-83	80		25	-				<u> </u>					<u> </u>		_					<u> </u>			30	
	10-11-83	35																						30	į

<i>2111</i> c	ARD	61K	PINT	BUT	GWT	WIG	GAD	SHOV	SCAUP	RN	CANS	RH	RODDY	G.D. EVC	вн	MAR	MER	Ma	(·G	ćq	29	BSG	Coor	BALD EAGL
9-14-82				65		<u> </u>				 													50	
9-21-82	60			 		25									 								40	
7-27-82	50			30		25				· .													60	
0- 1- 82	40			· ·	l	15																	40	
10 - 11 - 82	75		25			50																	100	
10-18-82	175			_		80																	75	1
6-26-82	175	5				80		35															75	
1-4-82	NO	Cons	us	DUE	סק	F04																		
1-8-82	225	5	40			80																	100	
1-15-82	80	25																	-					/
2-6-82	80								30					10		10								1
2-13-82	200	20		Mis	s. k	VER	1801	o	6000	STA	E			75		25								2
	1			1		1																		
Arrit	-	<u>+</u>	1		†		1	AND												 				

1-6