PRESENTATION TO THE

### UPPER MISSISSIPPI RIVER BASIN ENVIRONMENTAL MANAGEMENT PROGRAM WORKSHOP

BY



ENVIRONMENTAL ENGINEER US ARMY CORPS OF ENGINEERS, ROCK ISLAND DISTRICT

AUGUST 18, 2007







# **Engineering Design Handbook**

### Dredging & Dredged Material Placement







- Resource Problem
- Sedimentation Rates
- Dredging Equipment
- Dredge Cuts
- Dredged Material Placement Sites
- Questions?



# **Resource Problem**



- Backwater areas support diverse habitats.
- Sedimentation primary source of degradation.
- Dredging addresses degradation and may support other project features.



Dredging Goals & Objectives



#### GOALS

of Engineers\*

- Enhance aquatic habitat
- Enhance fisheries habitat



#### **OBJECTIVES**

- Increase backwater depth diversity
- Provide over wintering habitat for fish





## **Sedimentation Rates**



 Based on Best Available Data and Sound Judgment

#### Projects Providing Additional Data





Mechanical



VS.

Hydraulic





**Mechanical Dredges** 



#### Include:

Clamshell





#### Backhoe

Dragline





## **Mechanical Dredges**



US Army Corps of Engineers\*

### Advantages:

- Rugged & Reliable
- Debris removal
- Efficient for some applications
- No return water





### **Disadvantages:**

- Lower production rates vs. hydraulic
- Inefficient over short transport distances
- May require nonconventional buckets



## **Hydraulic Dredges**



- Include:
  - Cutterhead Pipeline









## **Hydraulic Dredges**



US Army Corps of Engineers\*

#### Advantages:

- High production rates
- Cost effective for some applications
- Readily available in varying sizes
- Capable of dredging most types of material





### **Disadvantages:**

- Debris & cohesive material may reduce efficiency
- Slurry is 80% 90% water
- Return water must be managed



**Dredging Equipment** 



#### **Selection Criteria:**

- Volume of material
- Type(s) of material
- Consolidation
- Debris
- Access



- Cut dimensions
- Placement site
- Beneficial use
- Return water
- Production rates





## **New Technology**

- Dredge Wheel
- High Density Slurry
- Belt Press
- ???









# **Dredge Cuts**



#### **Depth of cut:**

- Typical water level elevations
- Low-flow winter regulations
- Desired water depth
- Sedimentation rates





#### Alignment and width of cut:

- Existing channel conditions
- Placement site capacity
- Funding



# **Dredged Material Placement Sites**



#### Bankline



Upland

- CDF



Island Creation







# **Dredged Material Placement Sites**



### **Design factors:**

- Access
- Material characteristics
- Volume to be dredged
- Insitu density
- Type of dredging equipment
- Dredge discharge rates (hydraulic dredge)
- Consolidation requirements
- Return water (hydraulic dredge)
- Potential Beneficial uses







# **Dredged Material Placement Sites**



### **Potential issues/concerns:**

- Impacts to wetlands, endangered species, water quality
- Impacts to floodway conveyance, flood heights, flood storage
- Existing land use
- HTRW
- Beneficial uses





# **Dredged Material Placement Sites**



#### CDF (Confined Disposal Facility)

- An engineered structure designed to enclose dredged material, isolating it from adjacent waters and/or lands.
- EM 1110-2-5027 for CDF design guidelines







## **Dredging & Dredged Material Placement**







# **Questions for YOU**



- How can sedimentation rate estimates be improved?
- What have you done that would improve dredging equipment selection?
- What new technologies have you investigated and/or tried?
- What have you done that improves the dredge cut and/or placement site design?
- Lessons Learned?