PRESENTATION TO THE

UPPER MISSISSIPPI RIVER BASIN ENVIRONMENTAL MANAGEMENT PROGRAM WORKSHOP

by KARA MITVALSKY

ENVIRONMENTAL ENGINEER US ARMY CORPS OF ENGINEERS, ROCK ISLAND DISTRICT

AUGUST 18, 2005

RUNCORPS OF BROWN

Water Level Management

- Resource Problem
- Backwater Lakes, MSMUs, Green Tree Reservoirs
- Perimeter Levees, Cross Dikes and Overflow Spillways
- Pumps and Wells
- Water Control Structures
- Questions?

Resource Problem

- UMRS characterized by seasonal flood and drought conditions.
- Navigation system has impacted these natural conditions (low river stages eliminated).
- Large water level management in pools (draw downs) not discussed in this chapter
- Smaller drawdown (backwater areas) are covered.

- Prior to navigation system, backwater lakes would dry during drought season.
- Drying would encourage growth of emergent aquatic plants.
- Plants provide food, shelter, dissolved oxygen to wildlife.
- Water level control provides temporary seasonal increase or decrease to mimic natural hydrologic regimes over large areas.

Goals & Objectives

GOALS

- Enhance wetland habitat for migratory waterfowl
- Enhance aquatic habitat

OBJECTIVES

- Increase reliable food source and resting area
- Provide water level control

The NAMES

- A rose is a rose....
 - Unless it is a backwater lake
- For purposes of the Design Handbook:
 - Backwater Lakes
 - Moist Soil Management Units
 - Green Tree Reservoirs

Backwater Lakes

- Lakes which generally still exist, but are not operating to create fullest habitat benefits.
- Development, navigation, siltation may have all impacted lakes.

- Moist soil management units are generally constructed.
- Similar to backwater lake, other than they may not have been a lake immediately prior to construction.
- Levees containing the area.
- Blurry distinction between backwater lakes and MSMUs.

Holds water while trees are dormant.

Green Tree Reservoir Requirements

- Need dominance of hardwood trees 40 years old.
- 10 acre minimum
- Flat area (flood 1 to 18 inches)
- Soils hold water
- Adequate water supply
- Close proximity to traditional waterfowl wintering grounds and flight paths
- 3 foot deep water table during growing season

Operation

- Applies to all types of water level management systems (see exceptions for GTR later)
 - Managed for annual drawdown
 - Keep water out in late spring and summer
 - Flood the area in the fall

of Engineers*

Management Plan

Typical Water Level Annual Management Plan

Month	Action	Purpose
April to July	Dewater area	Expose and maintain mudflats to allow revegetation
August to November	Gradually increase water levels to correspond with growth of marsh plant community	Provide access to food plants for migratory waterfowl
December to April	Maintain water levels to maximum extent possible and then release water late during early spring	Maintain winter furbearer habitat and then prepare for aquatic plant germination through gradual water release

Management Plan GTR

MAKE SURE IT VARIES

- Flood before leaves turn color in fall (vary one month)
- Dewater before new leaves appear in spring (vary three months)
- Leave unflooded one out of every 6-8 years
- Change flooding depths year to year and within season
- Flood an dewater slowly
- Timber Management

Design Features

Design Features

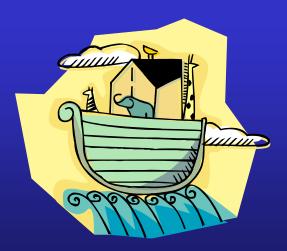
- Water containment
 - Perimeter levees
 - Cross dikes
 - Overflow spillways
- Water supply
 - River water (Pump station)
 - Groundwater (Well)
- Water control structures
 - Maintain desired water elevations throughout the year.
 - Varied Designs.

Water Containment

Perimeter Levees, Cross Dikes, and Overflow Spillways (Levees...)

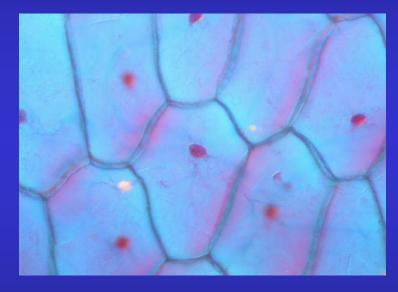
- General Design Criteria
 - Construct reliable levee
 - Provide adequate flood protection to meet management goals
 - Locate borrow sites in areas which would improve habitat
- Prevent interior sedimentation
- Protect against loss of water control during floods)

- Next to major river?
 - Consider sloping to allow for gradual overtopping during floods
- Top widths?
 - Wide enough for access
- Slopes?
 - Reduce erosion
 - Reduce rodent problems


US Army Corps of Engineers[®]

Height

- (Perimeter) Compare level of protection (flood elevation) to cost and benefits of that protection.
- Cross Dikes: Provide freeboard above ponding depth.



Cells

- Single cell
 - ♦ Good for flat terrain
- Multiple cells
 - Management flexibility
 - Maximize ideal water depth for unleveled terrain



Overflow spillways

- Downstream end of site
- Elevation lower than perimeter levee.
- Provides overtopping at a lesser flood event.

Levees... Borrow

Borrow

- On site material (if suitable).
- Converts cropland to non-forested wetland.
- Make large and shallow to increase benefits (potholes)

Levees... Maintenance

- Inspections (annual or following flood events
- Look for:
 - Settlement, slough, or loss of section
 - Wave wash and scouring
 - Overtopping erosion
 - Inadequate vegetative cover
 - Unauthorized grazing or traffic
 - Encroachments
 - Unfavorable vegetative growth
 - Seepage Distress

One Team: Relevant, Ready, Responsive and Reliable —

of Engineers*

Water Source

Pump Stations and Wells US Army Corps of Engineers*

- Several options to consider including:
 - Structure
 - Pump Direction
 - Fuel Source
 - Maintenance

Pump vs. Well

- Pump
 - Uses surface water (desirable)

WellLimited capacity

Electric Pumps

Advantages

- Quieter
- Easier automation
- Less routine maintenance
- Submergible
- Require less time to operate

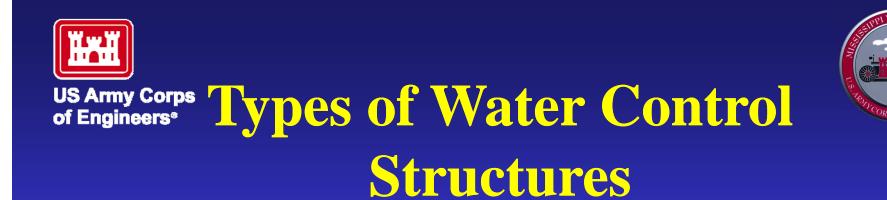
- Disadvantages
 - Must be protected from flooding
 - Require available utility power
 - Larger structures required to house electrical equipment

Diesel Pumps

- Advantages
 - Suited if utility power is unavailable
 - Trailer mounted to reduce threat of flooding
 - Flexible drive arrangements (direct, belt, hydraulic)

- Disadvantages
 - Noisy
 - Require more routine maintenance
 - Capacity and availability of on site fuel can be restrictive
 - Difficult to automate

Pump Station Maintenance


Inspections (annual and after flood event)

- Structural Steel
- Structural concrete
- Displaced Missing Riprap
- Electrical lighting/standby generator
- Discharge pipe
- Sump
- Hydraulic Pump

- Stoplog
- Sluice Gate
- Tainter Gate
- Overflow Weir
- Fuse Plug

US Army Cor Structure with Four 5' Weirs

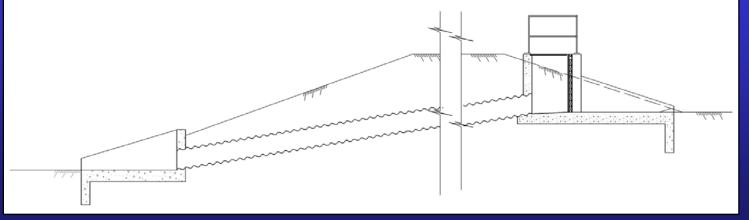
Bay Island HREP Pool 22

Single Bay Concrete Stoplog

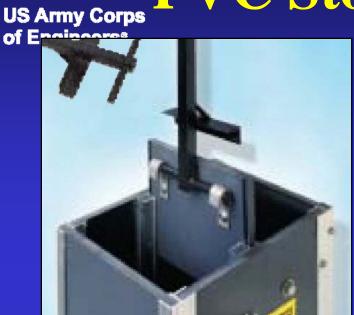
Princeton Refuge HREP Pool 14

Single Bay Concrete Stoplog US Army Constructure with One 5' Weir

Spring Lake HREP Pool 13



US Army Corps of Engine Outlet • Inlet



PVC Stoplog Structure

Agri Drain Inline Water Level Control Structure™

Steel Stoplog Structure

Andalusia Small Boat Harbor Pool 16

Maintenance Issues

Sills, inlets, and outlets filling with sediment

Maintenance Issues

Degrading concrete or steel

Maintenance Issues

Erosion, seepage, encroachments occurring adjacent to the structure
Displaced or missing riprap

of Engineers*

Maintenance Issues

Trash and other debris accumulating around the structure

Operational Issues

- Installation & Removal
- Stoplog Material
- Lifting Devices
- Storage
- Security
- Safety

Installation & Removal

- Site managers prefer a one-person operation
- Difficult with:

US Army Corps of Engineers*

- high head
- heavy stoplogs
- bulky lifting device

Proper placement of stoplogs

Stoplog Material

Wood vs. Aluminum

- weight
- cost
- durability

Stoplog Material

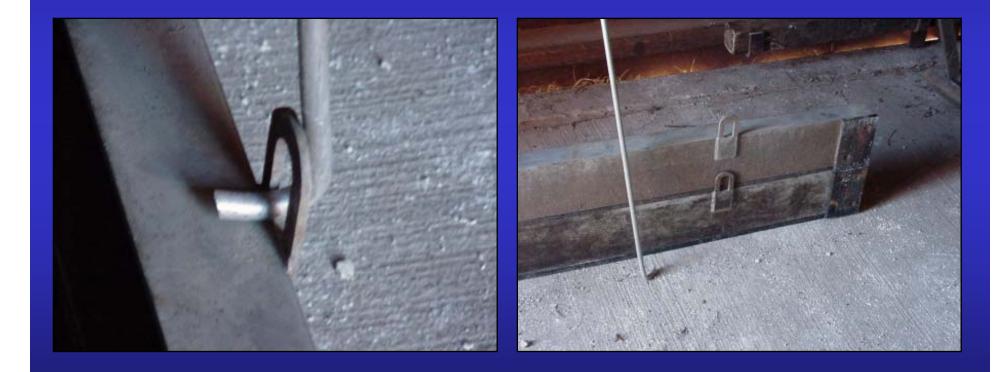
 Effective seal with aluminum stoplogs

Stoplog Material

Effective seal with wood stoplogs

Lifting Devices

Transporting and handling



Lifting Devices

Hooking stoplogs with high flows

Lifting Devices

Spring Lake HREP Pool 13

Lifting Devices

Princeton Refuge HREP Pool 14

- On-Site
 - pump house
- Off-Site
 - maintenance shop

Princeton Refuge HREP Pool 14

Storage

US Army Corps of Engineers*

Manual hoist with jib crane

- Vandalism
- Theft
- Unauthorized use

Padlocks

Inlet / outlet guards

Ladders

Guardrails

Questions for YOU

- How many people operate water level management unit?
- How close is the in field operation to that expected in the design?
- How is habitat responding?
- What are some of the best things built for you?
- What are some of the hardest things to operate or maintain?

- How does the facility respond to a flood or drought?
- Would you build another identical facility?
- What would you change?
- What other features in an water level management unit did we not mention?
- What features should we expand upon?
- Would the Chapter Description in the Design Handbook help a PDT start the design process?

HANT CORPS OF FACTOR

