

Applying Ecological Resilience Concepts to the Restoration and Management of the UMRS

Kristen Bouska,
Jeff Houser,
Nate De Jager

U.S. Department of Interior
U.S. Geological Survey

Acknowledgements/Contributors

Resilience Working Group

- Dave Bierman (IDNR)
- Kristen Bouska (USGS)
- Andy Casper (INHS)
- Bob Clevenstine (FWS)
- Sarah Schmuecker (FWS)
- Nate De Jager (USGS)
- Shawn Giblin (WDNR)
- Jon Hendrickson (USACE)
- Dave Herzog (MDC)
- Jeff Houser (USGS)
- Marvin Hubbell (USACE)
- Kirsten Mickelsen (UMRBA)
- Nate Richards (USACE)
- Steve Winter (FWS)
- Kenn Barr (USACE)

Resilience Workshop – January 2016

- Additional Workshop attendees
 - Yao Yin (USGS)
 - Brian Ickes (USGS)
 - Jim Rogala (USGS)
 - Melinda Knutson (FWS)
 - Dru Buntin (UMRBA)
 - Kevin Stauffer (MDNR)
 - Lance Gundersen (Emory U.)
 - Allyson Quinlan (Resilience Alliance)

Partnership Meetings

UMRR LTRM Science Mtg – Feb 2016 A-team update – Feb 2016 UMRCC Annual Mtg – March 2016 UMRR CC Quarterly Mtg – May 2016 HNA-II Workshop – July 2016 UMRBA & UMRR CC Mtg – Aug 2016 A-team update – Aug 2016 HREP Workshop – Sept 2016

Management approaches

Resilience: a definition

- "...capacity of a system to <u>absorb disturbance</u> and reorganize while undergoing change so as to <u>still retain essentially the</u> <u>same function, structure, identity and feedbacks</u> (Holling 1973, Walker et al. 2004)"
- In other words the ability of the system to cope with unexpected disturbances without losing its fundamental characteristics or identity

UMRS Resilience Assessment

O'Connell, D., B. Walker, N. Abel, and N. Grigg. 2015.

System Description -> Assessing the system

System Description -> Assessing the system

Resilience: main concepts

- Small changes in variables can lead to rapid changes in major ecosystem services when system is near a threshold
- Multiple possible **states** exist
- Components of the ecosystem can interact resulting in positive or negative feedbacks

State changes: gradual, threshold, & hysteresis

Abundant vegetation

Scarce vegetation

gradual

Feedback example: aquatic vegetation

Lentic backwater lakes and impounded areas

- Major resource
- Controlling variable
- External drivers
- Positive relationship
- Negative relationship
- Feedback loop
- * Manipulated by River Management

Alternative regimes

- Floodplain mature forest -> young forest -> reed canarygrass / wet meadow
- Aquatic to Terrestrial transition in side channels, backwaters, and deltas
- Lentic Abundant SAV / clear vs. scarce SAV / turbid
- Lotic diverse native fish community vs. nonnative dominant
- Others...

What are the mechanisms driving transitions or regime changes?

General Resilience: Principles for Building Resilience

- 1. Maintain diversity and redundancy
- 2. Manage connectivity
- 3. Manage slow variables and feedbacks
- 4. Foster complex adaptive systems thinking
- 5. Encourage learning
- 6. Broaden participation
- 7. Promote polycentric governance

General Resilience

- Maintain diversity and redundancy
 - provide options for responding to change and disturbance
 - Geomorphic diversity
 - Biodiversity
 - HREPs alter geomorphic diversity (e.g., dredging, island construction)

General Resilience	Metric	Data needed	Project/Status	Spatial Extent	Current
Principle			(Lead)		
Diversity and redundancy	Aquatic area diversity	Enhanced aquatic areas	HNA II	System	HNA 2000
			(Anderson)		
	Vacatation diversity	London	IINIA II (Da	Crystom	Do Josephand
	Vegetation diversity	Land cover	HNA II (De	System	De Jager and Rhoweder 2011
	Depth distribution and	Topobathy (applied to	Jager) In progress	System	Kilowedel 2011
	diversity (aquatic)	different discharges)	(Rogala)	System	
	diversity (aquatio)	different disentinges)	(Itoguiu)		
	Elevation distribution and	Topobathy	In progress	System	
	diversity (floodplain)		(Rogala)		
		~			
	Forest species diversity,	Species distribution or	HNA II (Van		
	functional redundancy,	abundance data	Appledorn)		
	and response diversity				
	Fish species diversity,	Species distribution or	Resilience	LTRM + LTEF	
	functional redundancy,	abundance data	(Bouska)		
	and response diversity				
	Aq. veg species diversity,	Species distribution or	Resilience	LTRM (P4, P8	
	functional redundancy,	abundance data	(Weeks)	& P13)	
	and response diversity				

General Resilience

2. Manage connectivity

- provides access to a wide range of conditions
 - Longitudinal barriers
 - Lateral (hydraulic)
- HREPs alter connectivity
 - dredging
 - closing dam modifications
 - Culvert construction/modification
 - Dike/levee modifications/breaches

Upper Mississippi River Restoration

General Resilience Principle	Metric	Data needed	Project/Stat us (Lead)	Spatial Extent	Current
Connectivity	Longitudinal barriers (percent days open)	Discharge and stage data from each L&D	Completed (Bouska)	System	Wilcox et al. 2004
	Floodplain connectivity (floodplain inundation)	Water surface elevations at different discharges	HNA II (Van Appledorn)	System	De Jager and Rohweder 2015
	Lentic-lotic hydraulic connectivity (connectivity metrics)	low-moderate	HNA II (Rogala)	System	

General Resilience

- Manage slow variables and feedbacks
 - Determine underlying structure of system
 - Hydrology
 - Sediment and nutrient accumulation
 - Spread of invasive species
 - Provide ability to strengthen or disrupt stabilizing feedbacks

General Resilience Principle	Metric	Data needed	Project/Status (Lead)	Spatial Extent	Current
	Flow regime (mainstem and tributaries)	USGS gages	HNA II (Rogala and Van Appledorn)	Gage locations	
	Water temperature	SRS, gages		LTRM, gage locations	
	Water surface elevation variability	Water surface elevations at different discharges		System	Rogala 1989 and 2000 (unpub)
	Floodplain inundation	Water surface elevations at different discharges	HNA II (Van Appledorn)	System	
	Sedimentation	Depth transects over time		Site-specfic transects in P4, P8 & P13	Rogala et al. 2003
	Total suspended solids	SRS – regression of TSS with catchment area	Resilience	LTRM to system extrapolation	Houser et al. 2011
	Invasive species (fish, veg, etc.)	Species distribution or abundance data			
	Catchment land use	National land use datasets	HNA II	System	
	Tributary nutrient and sediment inputs	Tributary SRS data		LTRM	Kreiling and Houser 2016
	Floodplain forest demographics	Forest species diversity, functional redundancy, and response diversity	HNA II (Van Appledorn)		
	Sediment nutrients	?			
	Soil	Forest data	HNA II (Van Appledorn)		
	Wind fetch	Wind fetch model	HNA II (Rogala)	System?	Rohweder et al. 2012

Expected Resilience Assessment outcomes

- Publish a simple, conceptual description of the UMRS that identifies the major resources provided by the river and the primary controlling variables.
 - Combines output of the resilience workshop, subsequent discussions among partners, existing programmatic reports, and published research.
- Assess current state and resilience of system
 - Trends in controlling variables
 - Feedbacks and interactions among controlling variables
 - Proximity to thresholds of concern
 - General resilience metrics
- Describe potential impacts of our management and restoration activities on the resilience of the UMRS

