

Important Winter Backwater Water Quality Variables

- Dissolved oxygen
- Temperature
- Flow
- These water quality variables are not independent

Poor Winter Water Quality

- Generally falls into two categories:
 - Low DO
 - Too much flow (causes low temperatures)
- These two conditions do not affect all sizes of fish equally
- Anoxic conditions are harder on larger fish

Bluegill Oxygen Consumption (1.7°C)

*Modified from Wohlschlang and Juliano (1959)

Poor Winter Water Quality

- Low temperatures are harder on small fish
- Flow makes things worse

Figure 3. Mortality for young-of-the-year of five temperate species at 0, 2, or 4 C over 30 days. Significantly different time-mortality distributions are indicated (D-max).

Figure 60. Drift net locations in the Pool 13 tailwater during March, 1985.

Figure 61. Length-frequency distribution of bluegill caught by drift nets in the tailwater of Pool 13 during March, 1985.

Mean Bluegill Mortality

Bluegill Age Frequency

- Increase water elevation has effectively reduced island elevations
- Increased lateral connectivity through island dissection
- Turned single- into multiple-connection lakes or side channels

- Existing quality overwintering lakes are surrounded or capped by diverse forests
 - Higher elevation
 - Less frequent overland flooding
 - Better sediment filtration
 - Lower sedimentation

- Strong tie between high quality terrestrial and aquatic habitat
- Enhance forestry resources while reconstructing natural filter for backwaters
- Building like nature will result in more resilient and healthy projects

