Upper Mississippi River Restoration Program Coordinating Committee

Quarterly Meeting

February 23, 2022

Agenda

with
Background
and
Supporting Materials

UPPER MISSISSIPPI RIVER RESTORATION PROGRAM COORDINATING COMMITTEE

February 23, 2022

8:00 a.m. - 2:30 p.m. CST

Agenda

[Note: The states, U.S. Army Corps of Engineers, and the Department of the Interior will arrange their respective pre-meetings via conference call prior to the February 23, 2022 quarterly meeting.]

ime A	ttachme	nt Topic	Presenter
8:00 a.m.		Welcome and Introductions	Brian Chewning, USACE
8:05	A1-16	Approval of Minutes of November 17, 2021 Meeting	
8:10	B1-3	Regional Management and Partnership Collaboration FY 2022 Fiscal Update and FY 2023 Outlook Infrastructure Investment and Jobs Act 2015-2025 Strategic and Operational Plan Review 2022 Report to Congress	Marshall Plumley, USACE
9:10	C1-10	 Communications UMRR Communications Team 2022 Action Priorities Status and Trends Report 3rd Edition Rollout External Communications and Outreach Events 	Rachel Perrine and Jill Bathke, USAC Andrew Stephenson, UMRBA All
9:50		Break	
10:00		 UMRR Showcase Presentations If You Restore It, Will They Come? Bluegill Status in Pool 12 Backwaters Huron Island 	Seth Fopma, Iowa DNR TBD, TBD
10:45		Program Reports • Habitat Restoration – District Reports	District HREP Managers
11:45		Lunch	
12:30 p.m.	D1-13	 Program Reports (Continued) Long Term Resource Monitoring and Science LTRM FY 2022 1st Quarter Highlights 2022 Science Meeting USACE LTRM Update 	Jeff Houser, USGS Karen Hagerty, USACE
		- LTRM Implementation Planning	Jeff Houser and Jennie Sauer, USGS and Karen Hagerty, USACE
		- A-Team Report	Scott Gritters, IA DNR
1:30		NESP Update	Andrew Goodall, USACE
2:15	E 1	Other Business • Future Meeting Schedule	
2:30 p.m.		Adjourn	

[See Attachment E for frequently used acronyms, UMRR authorization (as amended), and UMRR (EMP) operating approach.]

Continued on next page for remote connection information

Remote Connection Information:

February 23

UMRR Coordinating Committee Quarterly Meeting (8:00 a.m. to 2:30 p.m. CST)

Web and video conferencing: https://umrba.my.webex.com/umrba.my/j.php?MTID=mfecaf29c2599731fb044b04c5aa429b9

Phone connection:

o Dial-in: 312-535-8110

[Note: In the event that the call line provided is experiencing a high volume of calls, you may

also connect by dialing 469-210-7159.]

o Access code: 2551 094 7126

o Password: 1234

ATTACHMENT A	
Minutes of the November 17, 2021 UMRR Coordinating Committee Quarterly Meeting (A-1 to A-16)	

DRAFT

Minutes of the Upper Mississippi River Restoration Program Coordinating Committee

November 17, 2021 Quarterly Meeting

Virtual Meeting

Sabrina Chandler of the U.S. Fish and Wildlife Service called the meeting to order at 8:00 a.m. on November 17, 2021. UMRR Coordinating Committee representatives on the virtual meeting were Brian Chewning (USACE), Mark Gaikowski (USGS), Chad Craycraft (IL DNR), Randy Schultz (IA DNR), Megan Moore (MN DNR), Matt Vitello (MO DoC), Jim Fischer (WI DNR), and Ken Westlake (USEPA). A complete list of attendees follows these minutes.

Andrew Stephenson announced that Verlon Barnes retired from NRCS in October 2021 and that Andy Boehnenkamp will assume some of his duties in an interim capacity. NRCS has not yet officially designated a new UMRR Coordinating Committee representative.

Minutes of the August 11, 2021 Meeting

Jim Fischer moved and Randy Schultz seconded a motion to approve the draft minutes of the August 11, 2021 UMRR Coordinating Committee meeting as written. The motion carried unanimously.

Regional Management and Partnership Collaboration

Marshall Plumley said that November 17, 2021 marks the 35th anniversary of UMRR. Plumley reflected on how far the partnership has come from the vision set forth in the Master Plan to the special and unique program that is successfully achieving quality restoration in the Upper Mississippi River System today. Plumley expressed gratitude for the opportunity to serve as program manager, applauded the partnership for this significant milestone, and thanked all those involved in program implementation past and present. Jim Fischer echoed congratulations to all partners for UMRR's success.

FY 2021 Fiscal Update

Plumley said UMRR's FY 2021 plan of work included \$33,697,040, including carryover from FY 2020. UMRR achieved an execution rate of 98.77 percent in FY 2021. This is the fourth consecutive year the program has achieved an execution rate above 97 percent and the seventh of the last eight to receive near full funding. Plumley said this was one of the best execution rates within the Corps' nation-wide. It is an important metric within the Corps that is used to gauge program success. These funds represent thousands of hours of hard work by staff of every partner agency to put restoration on the ground and provide some of the best science on large river systems. Plumley expressed appreciation for all who contributed to implementing UMRR. In response to a question from Fischer, Angela Deen said additional expenses related to geo membranes increased the Bass Ponds habitat project cost.

FY 2022 Budget Outlook

Plumley said that, on September 30, 2021, Congress passed a continuing resolution authority (CRA) extending current funding levels for the federal government until December 3, 2021. District staff are operating under the assumption of an \$33.17 million allocation in FY 2022. The President's FY 2022 budget includes \$33.17 million for UMRR. The House and Senate Appropriations Committees have both acted on appropriations bills for FY 2022 and concurred with the President's recommended amount for UMRR. The final FY 2022 appropriation is not yet known.

The draft plan of work for UMRR in FY 2022 at a \$33.17 million funding scenario is anticipated to be as follows:

- Regional Administration and Program Efforts \$1,450,000
 - o Regional management \$1,180,000
 - o Program database \$100,000
 - o Program Support Contract \$120,000
 - o Public Outreach \$50,000
- Regional Science and Monitoring \$10,250,000
 - Long term resource monitoring \$5,000,000
 - o Regional science in support of restoration \$3,800,000
 - o Regional science staff support \$200,000
 - Habitat evaluation (split across three districts) \$1,125,000
 - o Report to Congress \$125,000
- Habitat Restoration \$21,470,000
 - o Rock Island District \$6,718,000
 - o St. Louis District \$7,502,000
 - o St. Paul District \$7,150,000
 - o Model certification \$100,000

Plumley said that, on November 15, 2021, the President signed the Infrastructure Investment and Jobs Act. UMRR capabilities above a \$33.17 million annual execution capacity were submitted for the Corps' potential work authorized by that bill. Project names and funding amounts are anticipated to be released in 30 to 60 days.

UMRR Ten-Year Plan

Plumley reported that the UMRR 10-year implementation plan was updated to reflect changes to project timelines. Project timelines were adjusted later for Conway Lake, Lower Pool 10, Reno Bottoms, Lower Pool 13, Green Island, and Pool 12 Forestry habitat projects. Physical construction was completed at Conway Lake, but some tree planting will extend into FY 2022. The anticipated completion for feasibility was extended for Lower Pool 10, Lower Pool 13, Green Island, Pool 12 Forestry, and Reno Bottoms. Reno Bottoms feasibility was extended to acknowledge some of the challenges the team has been addressing. Lower Pool 13 was scoped as a large, complex project and teams have been identifying priority areas within the project area to address. Anticipated construction completion for Huron Island Stages 2 and 3 was moved forward to mid-way through FY 2022. In response to a question from Fischer, Plumley said eight of the sixteen next generation HREPs recently identified are now included in the 10-year schedule. If UMRR begins to receive additional funds over \$33.17 million in future annual appropriations, another HREP selection process may be needed sooner than anticipated to ensure a healthy pipeline of projects. Sabrina Chandler said USFWS staffing levels would be a more limiting factor than project fact sheets if UMRR received additional funds and said other federal agencies may be in a similar position. Plumley agreed, noting that if NESP receives a new start and UMRR receives additional funding, the available talent and expertise to get the work done is something the larger partnership will have to address. Fischer agreed and said that states are in the same position.

Acres Restored

Plumley said the current schedule of HREP implementation would restore 76,110 acres between FY 2021 and FY 2031. In response to a question from Brian Chewning, Plumley confirmed that this estimate assumes continued funding levels of \$33.17 million annually. Decreased funding levels would extend the end date for completing projects and increased appropriations could accelerate these restoration activities. The figure is an important communication tool for multiple audiences. Plumley said an alternate scenario based on full authorized funding of \$55 million is being developed.

Plumley reported that, from FY 2012 to FY 2020, UMRR accounted for nearly ten percent of all acres restored under the Corps' aquatic ecosystem restoration mission area. Construction on three projects was completed in calendar year 2021 totaling 5,590 acres that collectively increased UMRR's total acres restored to approximately 112,000 acres through 59 completed projects. These projects include Conway Lake, Pool 12 Overwintering, and Ted Shanks.

Potential Construction Completions

Plumley reported that four projects are anticipated to be completed in 2022 that would collectively add 9,810 acres to UMRR's total restored or improved habitat.

2015-2025 Strategic and Operational Plan Review

Plumley reported that on September 20, 2021, a survey was distributed to the UMRR partnership at-large regarding the 2015-2025 Strategic and Operational Plan. The distribution list included 200 individuals. The purpose of the survey was to seek input regarding progress achieved since 2015, priorities for the next five years, and the issue areas to include in the 2022 Report to Congress. Fifty-eight responses were received for a 29 percent response rate. Analysis is underway and a complete report will be distributed in early 2022. Andrew Stephenson said the presentation of results is still being organized. Response options for questions regarding success criteria ranged from strongly disagree to strongly agree and responses options for priority action questions ranged from not a priority to highest priority. Success criteria responses will likely be compressed into agree and disagree and responses regarding priority actions may be weighted. Ken Westlake and Karen Hagerty noted that some success criteria statements were strongly supported but not universally so. Stephenson said respondents could select "unsure" and noted that additional analysis of the open-ended comments may provide additional insights. Fischer expressed appreciation for the survey and said the results will be useful for shaping the program going forward and for reflecting upon in future years.

2022 Report to Congress

Plumley provided an overview of completed and ongoing programmatic activities, which will be highlighted in the UMRR 2022 Report to Congress. Completed activities include the Habitat Needs Assessment II and Statements of Significance. In-progress activities include the strategic plan review, LTRM status and trends report, desired future conditions, HREPs, and LTRM activities. The strategic plan review and LTRM status and trends report are nearly complete. Ongoing development of a desired future conditions statement is drawing from existing partnership documents. Future activities include partnership recommendations for improving UMRR implementation. Plumley reported that the first progress update meeting for the UMRR 2022 Report to Congress was held on August 23, 2021. Lead authors provided details regarding their chapter and section content. Chapters will be assembled into a draft report document in December 2021 and shared with partners for initial review in January 2022. Partner comments will be consolidated into one document and shared to ensure transparency in report development. The first in-progress review (IPR) with MVD and USACE Headquarters is anticipated for late-January 2022. This will provide an opportunity to engage with Headquarters reviewers early in the process and allow adequate time to make any necessary modifications. In response to questions from Stephenson and Fischer, Plumley said the initial January

review will include report authors and Coordinating Committee members and that partners will be asked to coordinate a more in-depth review by their agencies in March-April 2022. Plumley said that a call to discuss implementation issues was rescheduled from November 10, 2021 to November 17, 2021, following conclusion of the UMRR Coordinating Committee quarterly meeting. The next progress update meeting is scheduled for November 29, 2021.

UMRR Joint Charter Review

Plumley reported that Stephenson sent a September 10, 2021 email to the UMRR Coordinating Committee members routing the Joint Charter of the Upper Mississippi River Restoration Coordinating Committee, Analysis Team, and Habitat Rehabilitation and Enhancement Projects Selection Process Teams to UMRR Coordinating Committee members for electronic signatures. On November 3, 2021, the Coordinating Committee completed electronic signatures of the Joint Charter. Plumley expressed appreciation for the effort from the A-Team, District River Teams, and Coordinating Committee to update the Joint Charter. This is the first update since 2013 and helps set the sideboards for how various aspects of the program operate.

Communications

UMRR Communications and Outreach Team

Rachel Perrine said the UMRR Communications and Outreach Team's last monthly meeting on October 6, 2021 focused on UMRR 35th anniversary actions, the LTRM status and trends report, and a UMRR flyer. Jill Bathke said the COT has three ongoing initiatives to recognize and celebrate UMRR's 35th anniversary including finalizing the program flyer, developing a pull-down banner for public and groundbreaking events, and a video series. The team finalized the flyer design and content in October 2021. The flyer is geared toward a general audience with limited knowledge of UMRR and will highlight the value of the UMRS and benefits of UMRR in the context of water, wildlife, and way of life. The final version includes state department logos instead of state seals. The INHS logo will be added, and an electronic version of the flyer will be distributed to the partnership. The pull-down banner is anticipated to be completed in late 2021. The themes of the first four videos are:

- 1. What is UMRR: history and partnership
- 2. Success of UMRR
- 3. Science on the river
- 4. Future of UMRR

The team completed a draft of the first video highlighting UMRR history and partnership and played it for the UMRR Coordinating Committee. Comments on the video can be submitted to Bathke. Kirsten Wallace applauded the video and the team's efforts and said the authenticity of messages comes across clearly and that she is excited to share the final product. Bathke said the COT also developed a set of UMRR fast facts around three key messages related to the UMRS, UMRR, and LTRM and HREPs.

- <u>UMRS Key Message</u>: The Upper Mississippi River System (UMRS), which includes the Upper Mississippi River, Illinois River, and tributaries, is an excellent example of river management in the United States that balances many uses.
- <u>UMRR Program Key Message</u>: For over 35 years, the Upper Mississippi River Restoration (UMRR) program has enhanced and restored degraded habitat and natural resources in the internationally important Upper Mississippi River System (UMRS).

<u>LTRM/HREP Elements Key Message</u>: Collection of water quality, vegetation, and fish community data within the Upper Mississippi River System (UMRS) helps the Upper Mississippi River Restoration (UMRR) program understand the river ecosystem so it can target habitat restoration and management actions to benefit the river and the public.

Each key message has supporting facts that can be referenced prior to public meetings and other engagements to ensure the partnership is sharing a consistent message. The COT sees this as a starting point for developing additional messages. COT members have the full document and can share it with their agencies. The COT is considering options for supporting the strategic rollout of the third UMRR LTRM status and trends report in the coming months.

Perrine said FY 2021 COT accomplishments include:

- Established team goal
- Created an updated UMRR program flyer
- Supported UMRR Coordinating Committee on the development of a storyline
- Initiated development of a communication and outreach materials inventory
- Created and executed an Earth Day social media campaign "Restore Our Earth"
- Created and distributed materials for UMRR 35th Anniversary program flyer, video series, key messages

Perrine and Bathke expressed appreciation to the UMRR Coordinating Committee for support and COT members for their time and effort on the team's activities. Plumley expressed appreciation to Perrine and Bathke for their leadership and to partners for their willingness to engage on the COT. Hagerty, Fischer, and Sabrina Chandler echoed Plumley's sentiments. Ken Westlake agreed and said the products tell the UMRR story in a clear and engaging way.

External Communications and Outreach

Communication and outreach activities in the fourth quarter of FY 2021 include the following:

- Marshall Plumley said he and Brian Markert have had opportunities to engage with folks working on the Lower Mississippi River including an ongoing ecosystem restoration study in Memphis District as part of a larger Lower Mississippi River habitat restoration effort. Plumley said he shared lessons learned from a mature program and said it has helped to strengthen relationships on the Mississippi River as a whole. He expressed appreciation to Gretchen Benjamin for helping make the connection.
- Jim Fischer said, on November 3, 2021, he presented to Wisconsin floodplain managers on UMRR and Pool 8 HREPs. Jeff Janvrin presented to the UMRCC fish tech section on post-project fisheries response and observation on dissolved oxygen saturation in Spring Lake HREP in Pool 5. Fischer said Sara Strassman provided updates on HREPs and LTRM at the August and November 2021 Mississippi River Parkway Commission meetings. Shawn Giblin and Strassman submitted a report to the Wiki Climate Change page on the Mississippi River. Fischer noted the value of UMRR building resilience in the river ecosystem, considering how HREPs are implemented to be resilient to climate change. Fischer said he has also been working with Wisconsin's Office of Great Waters to renew their Mississippi River web presence. They are developing a business case that will be sent for division approval and would help enhance their capability to share UMRR news. Fischer said LTRM field station staff are wrapping up their season and have ample opportunities at boat landings to engage and educate the curious public about UMRR and LTRM, including by distributing UMRR business cards. Andrew Stephenson expressed appreciation for the effort to

improve the web presence. Fischer said the Wisconsin DNR communications staff responded with enthusiasm and agreed there was a great deal of Mississippi River work that should be highlighted.

- Sabrina Chandler reported that USFWS recently acquired land at the Port Louisa Refuge near the Keithsburg HREP through funding from Migratory Bird Conservation Fund. Chandler provided a presentation overviewing the type of habitat on the property, planned habitat restoration, and anticipated use of the property to the Migratory Bird Conservation Committee, which is chaired by the Secretary of the Interior. Chandler noted that the property is complementary to ongoing restoration at the Keithsburg HREP. In response to a question from Sen. Martin Heinrich of New Mexico about the restoration project, Chandler said she had a unique opportunity to discuss UMRR HREPs with an important audience that included multiple Senators and others. Sen. Heinrich expressed interest in the work and asked follow-up questions.
- Mark Gaikowski said Jeff Houser, KathiJo Jankowski, and Danelle Larson presented overviews of the LTRM status and trends report, LTRM water quality, and aquatic invasive species, respectively, at the Upper Mississippi River Conference in October 2021. Randy Hines discussed UMRR and LTRM during interviews regarding recent joint MUM invasive carp removal efforts.
- Kirsten Wallace said UMRBA and UMESC were invited to present at the December 13 and 14, 2021 Hypoxia Task Force (HTF) meeting. The presentation will focus on UMRR LTRM nutrient trends and UMRBA's How Clean is the River report. It will provide a good portrayal of federal and state agencies working together on the Upper Mississippi to collect this information and use it in decision making. One of the primary goals is to help connect LTRM data with investment and activities in the watershed. The HTF meets twice each year and includes leadership from many agencies.
- Megan Moore said Rob Burdis from the Minnesota LTRM field station presented to the UMRCC water quality tech section regarding his zooplankton research and Eric Lund presented to an internal Minnesota DNR audience regarding the integration of LTRM and HREPs.

UMRR Showcase Presentations

FY 2021 LTRM Accomplishments

Jennie Sauer overviewed FY 2021 LTRM accomplishments. Sauer said that Attachment D of the meeting agenda packet includes a chart of LTRM milestones. She expressed appreciation to all the technicians, field station leaders, and others who have contributed to data collection and analysis. Base monitoring accomplishments include:

- Fisheries component: LTRM has the most extensive fisheries dataset for a great river in the world, which includes 28 years of standardized scientific data capturing fish community. Abundance and diversity of fisheries is high despite invasion of bigheaded carp species. There are multiple publications underway. Upcoming work includes QA/QC, net mending, fish sorting, and report writing. Additional fisheries projects include vital rates, smallmouth buffalo recruitment, vegetation and fish response to environmental pool management, and large woody debris occurrence.
- Aquatic vegetation component: LTRM has the largest aquatic vegetation dataset in the world, which includes 22 years of data, capturing plant community changes and recovery of aquatic vegetation in the Upper Impounded Reach. Multiple publications are underway. In 2021, abundance and diversity of aquatic vegetation is high despite new and concerning invasion of flowering rush. The first alert of flowering rush, an invasive species, came from the LTRM field stations in 2020. Detections from LTRM observations in Pools 4, 8, and 13 are being submitted to EddMapS. A predictive model of SAV presence is being developed and

preliminary findings suggest 88 percent prediction accuracy with nine variables, including water quality data, demonstrating integration of LTRM components data.

- Water quality component: Includes 28 years of data to capture spatially and temporally dynamic water quality changes in response to watershed changes. Multiple publications are underway. In 2021, continued chloride monitoring and phytoplankton research will occur. The LTRM water quality lab at UMESC conducts over 50,000 analyses per year, maintaining high standards demonstrated through voluntary participation in standards comparison tests with other USGS labs.
- Other: Activities under base monitoring also include the UMRR LTRM all-hands meeting that was held March 30-31, 2021; expansion of LTRM fisheries sampling designs, methods, and procedures to all UMR navigation pools bordering the state of Illinois; efficient and effective data management and uploading; maintenance of graphical browsers for easy access of summarized data; and involvement in HREP PDTs.

Science in support of restoration and management research activities include:

- Understanding constraints on submerged aquatic vegetation distribution in the UMRS
- Interpretation of 2020 systemic land cover/land use data
- Refining Upper Mississippi River's ecosystem states framework
- Midwest climate change vulnerability assessment
- UMRS resilience assessment
- Ecohydrology projects
- Improving our understanding of historic, contemporary, and future UMRS hydrology
- Developing a better understanding of geomorphic changes
- Systemic analysis of hydrogeomorphic influences on native freshwater mussels
- Combining genetics, otolith microchemistry, and vital rate estimation to inform restoration and management of fish populations in the UMRS
- Understanding physical and ecological differences among side channels of the UMRS
- Development of a standardized monitoring program for vegetation and fish response to environmental pool management practices in the UMRS
- IWW lock closure fisheries and vegetation monitoring
- Wild celery winter bud dynamics in Pools 4, 8, and 13 of the UMR
- Reforesting UMRS forest canopy openings occupied by invasive species
- Forest response to multiple large-scale inundation events
- Using dendrochronology to understand historical forest growth, stand development, and gap dynamics

Karen Hagerty and Matt Vitello applauded the LTRM field stations and UMESC staff for the outstanding science contributions from LTRM. Andrew Stephenson, Jim Fischer, and Sabrina Chandler agreed, and Stephenson noted it is a monumental point for science on the river. Fischer said there is a great deal of work behind the scenes, including the barcode system during QA/QC to ensure high data integrity. Megan Moore expressed appreciation for the LTRM year-in-review and said that it confirms why she has so much pride in the program. Moore also said another great addition in planning has been the focal areas, which have helped to develop the knowledge and story of the river. Hagerty

noted that providing accessibility to the information via the website and graphical browser has been a big achievement as well.

FY 2021 HREP Accomplishments

HREP District Managers summarized FY 2021 HREP accomplishments in their respective districts. Angela Deen said MVP awarded two construction contracts for Harpers Slough repairs and McGregor Lake. Repair of three flood-damaged islands at Harpers Slough was a new challenge for the program. The district coordinated closely with MVD on the best approach and drafted a letter report and plans and specs for the repair. Because the repair contract was lower than expected, the district was able to combine savings with funds from MVR to award the third option on the McGregor Lake contract. The Reno Bottoms HREP team developed two feasibility tools to help data-driven decision making, the USGS forest succession model and floodplain forest HEP model. The forest succession model generated maps incorporating climate change, invasive species, and land-use change that were used to formulate alternatives and the floodplain forest HEP model will be used to calculate ecosystem benefits. Reno Bottoms is the first project in the district with a forest focus, but the district has additional forest-focused projects in the queue and will utilize these models again. A successful drawdown at Bass Ponds resulted in excellent vegetation establishment, including wild rice. All five of the districts next generation fact sheets have been approved and the district has initiated feasibility for the first of these projects, Lower Pool 4 Big Lake. The district used a variety of methods to engage with stakeholders. These included traditional press releases on five contract awards and public review notices as well as new methods such as distributing posters and flyers at boat launches, increased signage at HREPs during construction, online videos for public comment, answering questions at a groundbreaking via Facebook Live, and participating in the UMRR Earth Day social media campaign "Restore our Earth." Davi Michl said MVR is also using the new Forestry Habitat Suitability Index model on Pool 12 Forestry HREP. In response to a question from Stephenson, Deen said final grading and seeding at Harpers Slough will occur in 2022.

Julie Millhollin reported that MVR advanced feasibility for three projects, including Lower Pool 13, Green Island, and Pool 12 forestry. The PDT finished identifying the western area for Lower Pool 13 and looked at water level management. A virtual open house was held for Green Island. The PDT is drafting the first three chapters of the feasibility report, held a measures workshop, and is addressing comments to move to alternatives identification. The district's design priorities included Steamboat Island Stage 1 and Keithsburg Division Stage 2a. Design of Steamboat Island is nearly complete. A design contract was awarded in September 2021 for Keithsburg Stage 2A. The project was divided into smaller pieces including building and tree clearing and pump and fuel trailers to facilitate contract awards. The district had four projects in construction. Construction began on the spillway at Keithsburg Division Stage 1 following delay from an eagle nest. Dredging is complete and placement sites are drying prior to shaping at Beaver Island Stage 1B. Pool 12 Overwintering construction was completed, and the project is being closed out. ERDC planted aquatic plants at Huron Island and monitoring is ongoing. Blanket Purchase Agreements (BPAs) with the US Forest Service facilitated 57 acres of containerized trees and shrubs at Pool 12 Overwintering and planting of 3,500 bare root seed tress and 4,000 containerized herbaceous plants at Huron Island. Two contracts were awarded for future timber stand improvement (TSI) and planting work at Beaver Island. Three separate contracts were completed for timber inventory activities. MVR created three YouTube videos to facilitate open houses and utilized Facebook and Twitter to communicate about UMRR including by participating in the UMRR Earth Day social media campaign.

In response to a question from Andrew Stephenson, Millhollin said the District is trying to create a ribbon cutting video for Pool 12 and will likely continue to create videos for public open houses in the future. Deen said pre-pandemic open houses were sparsely attended and that videos can reach a broader audience on their own time. MVP plans to utilize additional videos and social media posts in the future. In response to a question from Fischer, Deen said video links are available on the District website but

not on the program's "Find an HREP" page. Jill Bathke said links for Reno Bottoms are in both places. Fischer said the "Find an HREP" tool is useful for finding all the information on a project and suggested including links to the open house videos if not already done. Karen Hagerty agreed, noting that project storymaps are an improvement over static pages. Hagerty offered to explore the capability. Perrine suggested that future open houses should be advertised as interactive to encourage attendance even if a video is available. Fischer asked Millhollin if cuttings from TSI could be used for habitat purposes. Millhollin said flood damaged trees may not serve well as large woody debris because they break apart when chopped down, but that she would follow-up with a forester regarding the amount of suitable wood for habitat creation from TSI activities and report back. In response to another question from Fischer, Millhollin said contracts vary, but cuttings are usually burned on site or hauled off site, depending on how easy or hard areas are to access with equipment. Fischer suggested future consideration of using trees for habitat by anchoring in aquatic areas.

Brian Markert expressed appreciation to all implementing partners and said the strength and diversity of program partners help to make the program a success. Like the other districts, MVS has emphasized social media and videos to facilitate PDTs and stakeholder interaction over the last year. Markert reported that MVS completed construction at Ted Shanks HREP. Ted Shanks was one of the first projects to incorporate hydrogeomorphic analysis. Markert recognized the contributions of all PDT members, past and present, retired and still working, who helped make the project a success including retired site manager Mike Flaspohler, staff from Ducks Unlimited and Greenbrier Wetland Services, and USACE-Vicksburg District staff. The district advanced construction on three projects: Crains Island, Clarence Cannon, and Piasa and Eagles Nest. The sediment deflection berm, dike removals, and wetland excavation were completed at Crains Island. The pump station at Clarence Cannon is nearly complete and the berm setback was advanced to sixty-five percent. Low water slowed construction of Piasa and Eagles Nest. Design contracts are ready to advertise for Piasa and Eagles Nest Stage 2, Crains Island Stage 2, and Harlow Island Stage 1. The value engineering workshop was completed for Oakwood Bottoms and four plans and specs packages are being prepared. Feasibility planning was advanced for Yorkinut Slough and West Alton Islands. An in-progress review for Yorkinut Slough will be scheduled with MVD and a virtual kickoff meeting was held for West Alton Islands. MVD approved four of the MVS's six next generation fact sheets.

Long Term Resource Monitoring and Science

FY 2021 4th Quarter Report

Jeff Houser reported that accomplishments of the fourth quarter of FY 2021 include publication of the following manuscripts and completion report:

- The ecology of river ice. This paper was the product of an American Geophysical Union (AGU) Chapman Conference that brought together researchers focused on ice dynamics and river ecology. KathiJo Jankowski was a lead author on this literature review that integrated knowledge of current and future ice processes with what is known about ecological processes and communities. Houser said ice, its ecological effects, and our knowledge of both are not uniform across river networks. There is more extensive study of ice dynamics in larger rivers (economic importance, visible from satellites) but more ecology research in small streams (easier to work in over winter).
- Warmer winters increase the biomass of phytoplankton in a large floodplain river. Winter productivity is important in sustaining phytoplankton populations through the winter, but we know little about how it varies across habitats and reaches of the UMRS or how it will respond to warming temperatures. This manuscript addressed how winter and summer chlorophyll compare, if winter chlorophyll dynamics are similar across river reaches and lotic-lentic areas, and identified environmental drivers of winter chlorophyll dynamics. Results showed that, on

average, winter chlorophyll was lower than in summer, but not always. Winter chlorophyll was equal to or greater than summer levels in some areas and was highest in the backwaters. Winter chlorophyll dynamics over time were similar in main channel and impounded areas but were distinct in backwaters. The biggest effect was attributed to the number of freezing degree days. As winters warm, productivity can be expected to increase.

- Spatial and temporal dynamics of phytoplankton assemblages in the Upper Mississippi River. This study used phytoplankton samples from the UMRR-LTRM 2006-2009 data in Pools 8, 13, and 26 to assess algal community changes spatially. The three most common genera of phytoplankton (Aulacoseira, Aphanizomenon, and Microcystis) were all indicators of eutrophication. The main channel was dominated by cyanobacteria or diatoms. Backwaters were similar, but typified by flagellated species, which are important to larval fish. Nutrient limitation was not common, and discharge was more important for community composition. One-tenth of samples could be classified as a moderate-to-severe cyanobacteria bloom.
- Evaluation of a "trace" plant density score in LTRM vegetation monitoring. The project assessed the benefits of increasing the resolution of rake scores in a way that would also be compatible with current and past sampling. LTRM data show that rake scores of 1 represent a wide range of plant masses. This study determined that rake scores of trace (i.e., 0.08), 1, and >1 were differentiated by mass for unbranched morphology (i.e. Vallisneria) and branched (all other species). Authors recommend that trace rake scores be adopted as permanent in LTRM methods to better connect vegetation and biomass.

Status and Trends 3rd Edition

Houser reported that the UMRR LTRM Status and Trends Report 3rd Edition is being reviewed by USGS' Science Publishing Network (SPN) to produce a final version of the report in calendar year 2022. A small group is planning for a strategic rollout for report.

2022 Science Meeting

Houser said planning for the 2022 LTRM Science Meeting is underway. The meeting is anticipated to be held virtually in February 2022, pending results of an upcoming scheduling poll.

Houser said that two webinars describing ongoing research within the Upper Mississippi River Restoration (UMRR) program and its long term resource monitoring (LTRM) element will be held on December 2 and December 7, 2021. These webinars will provide updates on research projects supported by UMRR science in support of restoration funds. Each webinar will consist of a series of eight five-minute presentations, with time afterwards for questions to all speakers and discussion. Karen Hagerty said that interested individuals could email Houser or herself for the webinar information.

Land Cover/Land Use Processing

Jennifer Dieck reported that land cover/land use (LCU) processing is underway. Mapping has been completed for Pools 4, 8, 13, 26, and half of open river south and is underway for La Grange Pool. An unexpected retirement has reduced mapping capacity. Andrew Strassman is expected to complete La Grange Pool in December and begin the second half of open river south in FY 2022. Field work has been completed for Pools 9, 10, 11, 12, and Alton Pools. The A-Team was asked to provide feedback regarding which of those pools should be prioritized for mapping in FY 2022. USGS is moving forward with recruitment to hire another mapper.

USACE LTRM Report

Karen Hagerty said UMRR's LTRM FY 2022 budget allocation will follow FY 2021 allocations if the program receives \$33.17 million in funding. That is, \$6.3 million (\$5.0 million for base monitoring and \$1.3 million for analysis under base) with an additional \$2.5 million available for "science in support of restoration and management." Under the continuing resolution, base monitoring has only been partially funded. The bulk of science in support of restoration and management funds, approximately \$1.7 million, will go to proposals from 2022 science meeting. Existing funding commitments for three projects total \$740,000. Funds may also be used to support LCU processing. In response to a question from Andrew Stephenson, Hagerty said that the LCU staffing vacancy does not affect the ability to fund processing work.

LTRM Implementation Planning

Hagerty reported that the *ad hoc* LTRM implementation planning team has held recurring bi-weekly meetings with the selected facilitators, Max Post van der Burg and Dave Smith from USGS. *Ad hoc* team members include:

Jim Fischer	Mark Gaikowksi	Marshall Plumley	Kirsten Wallace
Matt Vitello	Jeff Houser	Karen Hagerty	Andrew Stephenson
Nick Schlesser	Jennie Sauer		-

The team is currently working to refine the problem statement and identify twenty potential participants representing the diverse partnership for workshop involvement. If held virtually, it is anticipated that implementation planning workshops would consist of a series of two to three hour calls over six to seven weeks. Jennie Sauer expressed appreciation to the planning team members and said the large planning process will benefit from input from the whole partnership.

A-Team Report

Scott Gritters said the A-Team met via webinar on November 3, 2021. Topics discussed include UMRR updates, recent LTRM science publications, detection and management of flowering rush, reinstating macroinvertebrate monitoring, continued impacts of COVID-19 on agency policies and practices, and an introduction to staff at the Open River Field Station by Dave Herzog. Gritters said agencies varied considerably with current COVID-related restrictions with some fairly regulated and others not. Gritters reported that Danelle Larson and Steve Winter led a discussion on flowering rush including initial detection and potential management actions. Flowering rush was first detected by LTRM in 2000, is now found mostly upstream of Pool 13, and was observed in seven percent of sampling sites in Pool 13 during 2021. It can occur in monotypic stands or mixed with other vegetation and expresses differently when dormant under high water or blooming under low water conditions. When dormant, it can be hard to identify as it resembles *Valisnaria*. Submersed application of the chemical Diquat has been identified as a possible means to manage flowering rush, but differences in state regulations and approval processes for chemical application have limited the areas where it can currently be implemented. Gritters said Jim Lamer provided an update on proposal development for reinstating the macroinvertebrate component of LTRM. It included a power analysis to estimate sampling requirements for statistically defensible analyses and compare to previous sampling efforts. Agencies and field stations indicated a willingness to conduct sampling if it were in line with past macroinvertebrate sampling requirements. Lamer's analysis suggested that backwater and impounded areas could be adequately sampled, but that side channel and main channels may not be suitable. In response to a question from Stephenson, Gritters said rock bag sampling may be a tool to add to the arsenal to have a systemic assessment of invertebrates. In response to a question from Lauren Salvato, Hagerty said macroinvertebrates will be a focal area at the next science meeting. Jim Fischer expressed appreciation to Gritters and Lamer for leading that discussion but questioned if the macroinvertebrate proposal should be considered as part of the science meeting or LTRM implementation planning. Hagerty agreed and said it will be a part of those discussions as well. Sabrina Chandler said the Refuge submitted an internal proposal to receive USFWS funds to address

flowering rush and that conversations with states on permitting issues are ongoing. She added that the refuge and federal requirements have high bars for approval and funding to apply chemicals for management purposes. Fischer said it may be worthwhile to have discussions about a Memorandum of Agreement between the Refuge and states for rapid response and to avoid permitting challenges. Chandler welcomed those discussions and any additional suggestions or aid in facilitating permit requests. [Note: The A-Team's next meeting is anticipated to be held in conjunction with the 2022 Science Meeting.]

Navigation and Ecosystem Sustainability Program

Andrew Goodall said the focus for NESP during FY 2021 has been to advance projects to construction readiness. Navigation and ecosystem projects that will be construction ready for FY 2022 include:

Navigation (Total \$12.5M)

- Lock 25 Lockwall Modifications
- Lock 14 Mooring Cell
- Moore's Towhead Systemic Mitigation

Ecosystem (Total \$10M)

- Pool 2 Wingdam Notching
- Twin Islands Island Protection
- Alton Pool Side Channel and Island Protection
- Starved Rock Habitat Restoration and Enhancement

A map of construction ready projects under NESP can be found on the NESP website at: https://www.mvr.usace.army.mil/Missions/Navigation/NESP/. Goodall said the NESP authorization requires advancing both large scale (e.g., L&D 25 Lockwall Modifications) and small scale (e.g., L&D 14 Mooring Cell) navigation projects, not one then the other. NESP projects were submitted for inclusion in the Corps' potential work plan associated with the Infrastructure Investment and Jobs Act. Project names and funding amounts are anticipated to be released in 30 to 60 days. Goodall expressed appreciation to the District-based River Teams that were asked to identify additional ecosystem projects for implementation under NESP. Twenty-nine projects across three districts were identified as priority projects. Twelve "Group 1" projects were selected for fact sheet development and have been sent to MVD for approval. A map of these projects is being developed and will be posted to the USACE NESP webpage once complete.

Carryover funds from FY 2021 will be used to continue advancing L&D 25 design work and L&D 22 fish passage. The L&D 22 Fish Passage Improvement Project Implementation Report is being transmitted to USACE Headquarters for approval by Chief of Engineers. Fish passage projects are the only projects that need to be submitted to that level and Lieutenant General Spellmon has indicated interest in delegating approval to MVD in the future. The L&D 22 fish passage team is continuing fish passage coordination, specifically regarding pre-project monitoring to inform adaptive management after construction is completed. The Fish Passage Science Panel will meet on November 29 and December 15, 2021 to plan and hold a virtual charette to determine necessary pre-project monitoring to inform an adaptive management plan for the project. Fish Passage Science Panel members include:

Mark Cornish, USACE
Collin Moratz, USACE
Rachel Hawes, USACE
Kara Mitvalsky, USACE
Tara Gambon, USACE
Kevin Haupt, USFWS
Sara Schmuecker, USFWS

Marybeth Brey, USGS
Andrea Fritts, USGS
Grace Loppnow, MN DNR
Ben Larson, MN DNR
Dave Heath, WI DNR
Ryan Hupfeld, IA DNR

David Glover, IL DNR Matt O'Hara, IL DNR Travis Moore, MO DoC Annie Hentschke, MO DoC John West, MO DoC TBD, EPA An updated monitoring and adaptive management plan is anticipated in January 2022. Initiation of monitoring activities is expected to begin in February 2022 and monitoring is expected to occur from March to September 2022. In response to a question from Karen Hagerty, Goodall and Rachel Hawes said a contract action is anticipated for monitoring activities. In response to a question from Andrew Stephenson, Goodall said that two years of pre-project monitoring is desired, but not required in the authorization. Stephenson expressed appreciation for the emphasis on pre-project monitoring as adaptive management is a keep feature of this fish passage project and future NESP projects.

Habitat Restoration

Angela Deen said MVP's planning priorities include Lower Pool 4, Reno Bottoms, and Lower Pool 10. A kickoff meeting for Lower Pool 4 was held virtually. Reno Bottoms is continuing in feasibility with formulation of alternatives. District quality control was completed for Lower Pool 10 and a final report is anticipated to be submitted to MVD in early 2022. MVP has four projects in construction totaling 5,000 acres. McGregor Lake is sixty-five percent complete. The next task at McGregor Lake is to divide Option 2 into smaller pieces, re-advertise by summer, and award at the end of FY 2022. Harpers Slough, Bass Ponds, and Conway Lake are all over eighty-five percent complete. Low water is needed at Harpers Slough for final grading and seeding in the spring. Bass Ponds is nearly complete, a pre-final inspection was held on November 16, 2021, and a ribbon cutting ceremony is anticipated for May or June 2022. A tree planting contract was awarded for Conway Lake and may be scheduled to coincide with Earth Day celebrations. The District is also wrapping up three project evaluation reports.

Julie Millhollin said MVR's planning priorities include Lower Pool 13, Green Island, Pool 12 Forestry, and Quincy Bay. The Lower Pool 13 PDT has identified alternatives for the western area. The Green Island PDT hopes to finalize alternatives in the coming months. The Pool 12 Forestry PDT held a measures workshop in September and is addressing public comments on chapters one to three. An inperson kickoff meeting and site visit for Quincy Bay was held in October 2021. MVR's design priorities are Keithsburg Division Stage 2 and Steamboat Island Stage I. The 100 percent review for Steamboat Island started on November 2, 2021. MVR has four projects in construction. Pool 12 Overwintering Stage 2 is complete, and the contract is being closed out. The contractor at Keithsburg Division Stage 1 started working on the spillway. ERDC completed aquatic vegetation monitoring at Huron Island Stage 3 in September 2021. The contractor at Beaver Island continues to work on shaping the placement sites. MVR is addressing sponsor comments on the Upper Pool 13 and Multi Pool Habitat Protection fact sheets prior to submitting to MVD. MVD is reviewing the Geneva and Hershey Island fact sheet.

Brian Markert said MVS's planning priorities include West Alton Islands and Yorkinut Slough. Several site visits were conducted at West Alton Islands and feasibility planning continues. Measures and alternatives development is progressing well for Yorkinut Slough and an IPR is being scheduled with MVD. MVS's design priorities include Piasa & Eagles Nest, Harlow Island, and Oakwood Bottoms. Design for Piasa and Eagles Nest Islands is complete, and the plan is to award Stage 2. Harlow Island Stage 2 plans and specs are anticipated to be completed and ready to advertise in late FY 2022, pending funding and priorities. Oakwood Bottoms has four plans and specs packages in development and the project is anticipated to be ready for advertising in the third quarter of FY 2022. Construction at Crains Island is ahead of schedule and one of two modifications has been completed. Construction of a rock structure at Piasa & Eagles Nest has begun and Stage 2 dredging will follow. Work on the pump station and berm setback are ongoing at Clarence Cannon. Other MVS activities include a flood damage assessment on Swan Lake HREP and summarizing lessons learned from past and current HREP construction efforts. Markert said that turnover and retirement has led to few staff being familiar with legacy projects and said there is a larger regional effort to capture and share lessons learned from HREP planning and construction. In response to a question from Ken Westlake, Markert said that Illinois DNR and TNC collectively own nearly an entire levee district and have expressed a desire to move an older CAP project to UMRR. Extensive data is available for the area of interest, but the agencies will need to

develop a fact sheet. In response to another question from Westlake, Markert said it was his understanding that the project would move to UMRR, not NESP, but that decision resides with sponsors.

Other Business

Upcoming quarterly meetings are as follows:

- February 2022 TBD
 - UMRBA quarterly meeting February 22
 - UMRR Coordinating Committee quarterly meeting February 23
- May 2022 TBD
 - UMRBA quarterly meeting May 24
 - UMRR Coordinating Committee quarterly meeting May 25
- August 2022 TBD
 - UMRBA quarterly meeting August 9
 - UMRR Coordinating Committee quarterly meeting August 10

With no further business, Chad Craycraft moved and Matt Vitello seconded a motion to adjourn the meeting. The motion carried unanimously, and the meeting adjourned at 1:45 p.m.

UMRR Coordinating Committee Virtual Attendance List November 17, 2021

UMRR Coordinating Committee Members

U.S. Army Corps of Engineers, MVD **Brian Chewning** Sabrina Chandler U.S. Fish and Wildlife Service, UMR Refuges Mark Gaikowski U.S. Geological Survey, UMESC Chad Craycraft Illinois Department of Natural Resources Randy Schultz Iowa Department of Natural Resources Megan Moore Minnesota Department of Natural Resources Matt Vitello Missouri Department of Conservation Jim Fischer Wisconsin Department of Natural Resources Ken Westlake U.S. Environmental Protection Agency, Region 5

Others In Attendance

Jim Cole U.S. Army Corps of Engineers, MVD Thatch Shepard U.S. Army Corps of Engineers, MVD Ben Robinson U.S. Army Corps of Engineers, MVD U.S. Army Corps of Engineers, MVD Leann Riggs Jim Lewis U.S. Army Corps of Engineers, MVD U.S. Army Corps of Engineers, MVP Angela Deen U.S. Army Corps of Engineers, MVP Chris Erickson Dave Potter U.S. Army Corps of Engineers, MVP U.S. Army Corps of Engineers, MVP Jill Bathke U.S. Army Corps of Engineers, MVR Marshall Plumley U.S. Army Corps of Engineers, MVR Karen Hagerty Julie Millhollin U.S. Army Corps of Engineers, MVR Davi Michl U.S. Army Corps of Engineers, MVR U.S. Army Corps of Engineers, MVR Rachel Hawes U.S. Army Corps of Engineers, MVR Rachel Perrine Megan Medinger U.S. Army Corps of Engineers, MVR Andrew Goodall U.S. Army Corps of Engineers, MVR U.S. Army Corps of Engineers, MVS Brian Markert Brian Johnson U.S. Army Corps of Engineers, MVS U.S. Army Corps of Engineers, MVS Jasen Brown Greg Kohler U.S. Army Corps of Engineers, MVS Brandon Schneider U.S. Army Corps of Engineers, MVS Robin Schoemehl U.S. Army Corps of Engineers, MVS **Katy Smith** U.S. Army Corps of Engineers U.S. Fish and Wildlife Service, IIFO Sara Schmuecker Matt Mangan U.S. Fish and Wildlife Service, IIFO

Tim Yager U.S. Fish and Wildlife Service, UMR Refuges Neal Jackson U.S. Fish and Wildlife Service, UMRCC

Lincoln Oliver U.S. Fish and Wildlife Service Jeff Houser U.S. Geological Survey, UMESC U.S. Geological Survey, UMESC Jennie Sauer Jennifer Dieck U.S. Geological Survey, UMESC Kristen Bouska U.S. Geological Survey, UMESC U.S. Geological Survey, UMESC JC Nelson Molly Van Appledorn U.S. Geological Survey, UMESC KathiJo Jankowski U.S. Geological Survey, UMESC Jason Rohweder U.S. Geological Survey, UMESC Jayme Strange U.S. Geological Survey, UMESC Scott Gritters Iowa Department of Natural Resources
Kirk Hansen Iowa Department of Natural Resources
Kevin Stauffer Minnesota Department of Natural Resources
Steve Galarneau Wisconsin Department of Natural Resources

Sara Walling Wisconsin Department of Agriculture, Trade and Consumer Protection

Kim Lutz America's Watershed Initiative

Doug Daigle Lower Mississippi River Sub-basin Committee

Mike Klingner Upper Mississippi, Illinois, and Missouri Rivers Association

Kirsten Wallace Upper Mississippi River Basin Association
Andrew Stephenson Upper Mississippi River Basin Association
Mark Ellis Upper Mississippi River Basin Association
Lauren Salvato Upper Mississippi River Basin Association

ATTACHMENT B								
Regional Management and Partnership Collaboration								
UMRR Quarterly Budget Reports (1/11/2022) (B-1 to B-3)								

UMRR Quarterly Budget Report: St. Paul District FY2022 Q1; Report Date: Tue Jan 11 2022

Habitat Projects

Project Name		Cost Estimates		FY2022 Financials			
	Non-Federal	Federal	Total	Carry In	Allocation	Funds Available	Actual Obligations
Bass Ponds, Marsh, and Wetland	-	\$6,300,000	\$6,300,000	-	\$275,000	\$275,000	\$39,605
Conway Lake		\$7,413,000	\$7,413,000	-	\$200,000	\$200,000	\$7,488
Harpers Slough	-	\$13,675,000	\$13,675,000	-	\$2,400,000	\$2,400,000	\$160,740
Lower Pool 10 Island and Backwater Complex	-	\$17,000,000	\$17,000,000	\$93,793	\$350,000	\$443,793	\$53,892
Lower Pool 4, Big Lake	-	-	-	-	\$10,000	\$10,000	\$62,875
McGregor Lake	-	\$23,550,000	\$23,550,000	-	\$3,118,000	\$3,118,000	\$265,163
Reno Bottoms	-	\$10,000,000	\$10,000,000	\$52,323	\$365,000	\$417,323	\$58,217
Total	-	\$77,938,000	\$77,938,000	\$146,116	\$6,718,000	\$6,864,116	\$647,980

Habitat Rehabilitation

Subcategory	FY2022 Financials			
Subcategory	Carry In	Allocation	Funds Available	Obligations
District Program Management	-	-	-	\$84,749
Total	-	-	-	\$84,749

Regional Program Administration

Subcategory	FY2022 Financials			
Subcategory	Carry In	Allocation	Funds Available	Obligations
Habitat Eval/Monitoring	-	-	-	\$27,879
Total	-	-	-	\$27,879

	Carry In Allocation		Funds Available	Actual Obligations	
St. Paul Total	\$146,116	\$6,718,000	\$6,864,116	\$760,608	

UMRR Quarterly Budget Report: Rock Island District FY2022 Q1; Report Date: Tue Jan 11 2022

Habitat Projects

		Cost Estimates		FY2022 Financials			
Project Name	Non-Federal	Federal	Total	Carry In	Allocation	Funds Available	Actual Obligations
Beaver Island	-	\$25,288,000	\$25,288,000	-	\$1,038,000	\$1,038,000	\$35,194
Green Island, IA	-	\$16,600,000	\$16,600,000	\$12	\$500,000	\$500,012	\$137,490
Huron Island	-	\$15,773,000	\$15,773,000	-	\$160,000	\$160,000	\$2,698
Keithsburg Division	-	\$29,643,000	\$29,643,000	\$19,488	\$3,829,000	\$3,848,488	\$155,150
Lower Pool 13	-	\$25,288,000	\$25,288,000	\$1,039	\$600,000	\$601,039	\$128,658
Pool 12 (Forestry)	-	-	-	\$88,200	\$500,000	\$588,200	\$120,926
Pool 12 Overwintering	-	\$20,870,822	\$20,870,822	-	-	-	-\$1,005
Quincy Bay, IL	-	-	-	\$2,947	\$500,000	\$502,947	\$89,017
Rice Lake, IL	\$7,280,000	\$13,459,763	\$20,739,763	\$118,025	-	\$118,025	\$2,413
Steamboat Island	-	\$41,977,000	\$41,977,000	-	\$325,000	\$325,000	\$100,250
Total	\$7,280,000	\$188,899,585	\$196,179,585	\$229,711	\$7,502,000	\$7,731,711	\$770,791

Habitat Rehabilitation

Subcategory	FY2022 Financials			
Subcategory	Carry In	Allocation	Funds Available	Obligations
District Program Management	-	-	-	\$34,169
Total	-	-	-	\$34,169

Regional Program Administration

Subcategory	FY2022 Financials			
Subcategory	Carry In	Allocation	Funds Available	Obligations
Adaptive Management	-	\$200,000	\$200,000	\$589
Habitat Eval/Monitoring	\$96	\$1,125,000	\$1,125,096	\$43,788
Model Certification/Regional HREP	-	\$100,000	\$100,000	\$3,958
Public Outreach	-	\$50,000	\$50,000	\$6,898
Regional Program Management	-	\$1,400,000	\$1,400,000	\$323,831
Regional Project Sequencing	-	\$125,000	\$125,000	\$3,344
Total	\$96	\$3,000,000	\$3,000,096	\$382,408

Regional Science and Monitoring

Subcategory	FY2022 Financials			
Subcategory	Carry In	Allocation	Funds Available	Obligations
Long Term Resource Monitoring	-	\$5,000,000	\$5,000,000	\$4,310,404
Science in Support of Restoration/Management	-	\$3,800,000	\$3,800,000	\$65,971
Total	-	\$8,800,000	\$8,800,000	\$4,376,375

	Carry In	Allocation	Funds Available	Actual Obligations
Rock Island Total	\$229,807	\$19,302,000	\$19,531,807	\$5,563,743

UMRR Quarterly Budget Report: St. Louis District FY2022 Q1; Report Date: Tue Jan 11 2022

Habitat Projects

Cost Estimates			FY2022 Financials				
Project Name	Non-Federal	Federal	Total	Carry In	Allocation	Funds Available	Actual Obligations
Clarence Cannon	-	\$29,800,000	\$29,800,000	-	\$750,000	\$750,000	\$74,393
Crains Island	-	\$36,562,000	\$36,562,000	\$28,498	\$1,900,000	\$1,928,498	\$305,584
Harlow Island	-	\$37,971,000	\$37,971,000	-	\$325,000	\$325,000	\$7,000
Oakwood Bottoms	-	\$29,000,000	\$29,000,000	-	\$675,000	\$675,000	\$253,642
Piasa - Eagle's Nest Islands	-	\$26,746,000	\$26,746,000	-	\$2,575,000	\$2,575,000	\$2,061,204
West Alton Missouri Islands	-	-	-	-	\$450,000	\$450,000	\$31,560
Yorkinut Slough, IL	-	\$8,500,000	\$8,500,000	\$9,343	\$425,000	\$434,343	\$69,790
Total	-	\$168,579,000	\$168,579,000	\$37,841	\$7,150,000	\$7,187,841	\$2,803,173

Habitat Rehabilitation

Subcategory	FY2022 Financials			
Subcategory	Carry In	Allocation	Funds Available	Obligations
District Program Management	-	-	-	\$99,355
Total	-	-	-	\$99,355

Regional Program Administration

Subcategory	FY2022 Financials			
Subcategory	Carry In	Allocation	Funds Available	Obligations
Habitat Eval/Monitoring	-	-	-	\$63,781
Total	-	-	-	\$63,781

	Carry In	Allocation	Funds Available	Actual Obligations
St. Louis Total	\$37,841	\$7,150,000	\$7,187,841	\$2,966,309

ATTACHMENT C
<u>Communications</u>
Status and Trends Report 3rd Edition Rollout (2/2022) (C-1 to C-10)

Problem/Opportunity:

The Upper Mississippi River Restoration (UMRR) program will publish its third status and trends assessment of the Upper Mississippi River System in March 2022. This report is a significant accomplishment for UMRR and includes important information about the river ecosystem. The report synthesizes 25 years of long term resource monitoring data and identifies statistically significant trends in ecological conditions of the UMRS.

Purpose:

- 1) Promote a broadly accessible and concise description of what we have learned about changes in the UMRS from three decades of monitoring and analysis.
- 2) Illustrate the fundamental role of long-term monitoring in the science and management of large floodplain river systems.
- 3) Increase stakeholder awareness of changes that have occurred widely across the system and those that have occurred only in parts of the system.

Communication Goals:

Inform and educate all interested parties with accurate and timely information.

Provide communication tools which can be used by UMRR partners to offer consistent synchronized messaging about the third status and trends report.

Communication Objectives:

- 1) Encourage target audiences to engage with the information in the third status and trends report
- 2) Encourage target audiences to understand the fundamental role of long-term monitoring in restoration and management of the UMRS
- 3) Increase stakeholder awareness and appreciation of the UMRS as a large and diverse river system with many regional differences

Strategies and Tactics:

<u>Strategy:</u> Create tools and products to encourage target audiences to engage with the information in the third status and trends report, understand the fundamental role of long-term monitoring in the management of the UMRS, and to increase appreciation of the UMRS as a large and diverse river system with many regional differences.

Tactics:

Targeted presentations focused on federal and state agencies working together on the Upper Mississippi River System to collect information and use it in decision making. Coordinated press release across UMRR partner agencies to include common elements and unique elements.

Create an animated GIF for use on social media and partner websites to educate audiences about the high-level takeaways from the report.

Key Messages:

- 1) The status and trends report provides a broadly accessible and concise description of what we have learned about changes in the UMRS from nearly three decades of monitoring and analysis.
- 2) Long-term monitoring provides baseline data that helps identify ecological trends, drivers in the system, and restoration needs and can help evaluate the impacts of future ecosystem disturbances.
- 3) Long-term monitoring provides river managers with the data and science needed for effective multipurpose management for this nationally significant navigation and ecosystem.
- 4) The UMRS is a large and diverse river system with many regional differences. Long-term monitoring across the system has allowed us to observe changes that have occurred widely across the system and those that have occurred only in parts of the system.
 - a) Water Quantity: Throughout the system, there is more water, more of the time. High flows are lasting longer and are occurring more frequently throughout the system.
 - b) Water Quality: The UMRS remains eutrophic in many reaches with excessive nutrients (nitrogen and phosphorus), but there is evidence of improvement in TP concentrations in some reaches.
 - c) Water Clarity: In most of the system, water clarity has increased.
 - d) Forest Loss: Floodplain forest area has declined across most of the system.

Background:

The Upper Mississippi River System (UMRS) is one of this nation's unique natural resources. The ecosystem provides habitat to a wide array of fish and wildlife species distributed among a complex assortment of flowing channels, floodplain lakes, backwaters, wetlands, and floodplain forests. With an ecosystem as diverse and complex as the UMRS, many of its processes and their interrelationships are not well known. Long-term monitoring provides baseline data that has helped to identify some of these processes and understand their interrelationships.

The 2022 Ecological Status and Trends Report is the third produced by the UMRR program. It summarizes analyses of two and a half decades of long-term monitoring data from the UMRS. Twenty-five years of long term monitoring data allows UMRR staff and partners to detect long-term trends, understand variation over time, and observe complex river patterns. The 2022 Status and Trends report includes detailed water quality, aquatic vegetation, and fisheries data from six unique study areas as well as select UMRS data for possible drivers of UMRS ecological dynamics, including hydrology, geomorphology, and land cover. These data provide river managers with the data and science needed for effective multipurpose management for this nationally significant navigation and ecosystem.

Milestones:

- 1980 Six state field stations established
- 1986 Congress recognized the UMRS as a nationally significant ecosystem and commercial navigation system. The 1986 WRDA authorized the Upper Mississippi River Restoration Program (UMRR). LTRM funding authorized at \$5.08 million/year.
- 1989 First collection of UMRR LTRM Land Cover/Land Use data
- 1993 LTRM begins sampling with random stratified design.
- 1998 First Ecological Status & Trends Report
- 1999 The 1999 WRDA reauthorized UMRR as a continual and expanded program and combined the authority for a computerized inventory and analysis system with the monitoring element and added applied research. LTRM authorized funding increased to \$10.42 million/year.
- 2008 Second Ecological Status & Trends Report
- 2020 The 2020 WRDA increased authorized LTRM funding to \$15 million/year.
- 2022 Third Ecological Status & Trends Report

General Talking Points:

- The Upper Mississippi River Restoration (UMRR) program will publish its third status and trends assessment of the Upper Mississippi River System in March 2022. This report is a significant accomplishment for UMRR and includes important information about the river ecosystem.
- The report synthesizes 25 years of long term resource monitoring data into a broadly accessible and concise description of what we have learned about changes in the UMRS from nearly three decades of monitoring and analysis.
- The report identifies statistically significant trends in ecological conditions of the UMRS. It includes information on water quality, aquatic vegetation, and fisheries data from six unique study areas as well as select system-wide data for possible drivers of UMRS ecological dynamics, including hydrology, geomorphology, and land cover.
- The UMRS is a large and diverse river system with many regional differences. Long-term monitoring across the system has allowed us to observe changes that have occurred widely across the system and those that have occurred only in parts of the system.
 - <u>Water Quantity</u>: Throughout the system, there is more water, more of the time. High flows are lasting longer and are occurring more frequently throughout the system.
 - <u>Water Quality</u>: The UMRS remains eutrophic in many reaches and nutrient concentrations (Total Nitrogen and Total Phosphorus) exceed EPA benchmarks. But there is evidence of improvement in Total Phosphorous (TP) concentrations in some reaches.
 - <u>Water Clarity</u>: In most of the system, water clarity has increased in the main channel. In some areas of the river, this increase in water clarity was associated with a large increase in the abundance of aquatic plants.
 - <u>Forest Loss</u>: Floodplain forest area has declined in most of the system. High water conditions extending later into the growing season are damaging the river's floodplain forests. New hardwood trees are unable to establish and mature, leaving significant gaps in the forest canopy
- Long-term monitoring provides river managers with the data and science needed for effective multipurpose management for this nationally significant navigation and ecosystem.

Supplemental Information:

UMRR program

- In 1986, Congress recognized the UMRS as a nationally significant ecosystem and commercial navigation system. To address the impacts of commercial and recreational navigation and rehabilitate degraded habitat, the 1986 Water Resources Development Act authorized the USACE to implement the Upper Mississippi River Restoration Program (UMRR).
- The UMRR program partnership includes a multitude of federal and state agencies, non-governmental organizations, and the public, which work hand-in-hand to implement all aspects of the program. Recognizing the inherent value of multi-agency and interdisciplinary cooperation, Congress assigned specific roles to USACE, USGS, USFWS, UMRBA, and the five Upper Mississippi River states. This partnership has allowed the program to be highly functioning, dynamic, and comprehensive.
- UMRR was the first federal program to combine ecosystem restoration, monitoring, and science on a large river system. Since it's authorization, UMRR has focused primarily on two of the six initially authorized elements: 1) habitat rehabilitation and enhancement projects and 2) long term resource monitoring, research, and analysis.
- For the past three decades, the first large river ecosystem restoration, science, and monitoring program in the Nation has successfully enhanced multiple-uses of the river and leveraged partnership-led management for ecosystem science and restoration of 112,000 acres.

LTRM datasets:

- Annual monitoring focuses on assessing the overall health and resilience of the ecosystem to inform its restoration and management.
 - <u>Fisheries component</u>: LTRM has the most extensive fisheries dataset for a great river in the world, which includes 28 years of standardized scientific data capturing fish community. Abundance and diversity of fisheries is high despite invasion of bigheaded carp species.
 - <u>Aquatic vegetation component</u>: LTRM has the largest aquatic vegetation dataset in the world, which includes 22 years of data, capturing plant community changes and recovery of aquatic vegetation in the Upper Impounded Reach of the UMRS. In 2021, abundance and diversity of aquatic vegetation is high despite new and concerning invasion of flowering rush, an invasive species.

<u>Water quality component</u>: LTRM has collected 28 years of data to capture spatially and temporally dynamic water quality changes in response to watershed changes.

Supplemental Information (continued):

- A key part of LTRMs data collection is the network of six, state agency operated field stations across the five Upper Mississippi River System states: Illinois, Iowa, Minnesota, Missouri, and Wisconsin.
- The staff at these field stations collect the long term water quality, vegetation, and fisheries data from the six study reaches of the UMRS each year and contribute their expertise to analysis, interpretation, and publication of the long-term data.
- Field station locations:

Lake City, MN

La Crosse, WI

Bellevue, IA

Havana, IL (Illinois River Biological Station)

Alton, IL (Great Rivers Field Station)

Cape Girardeau, MO (Open River & Wetlands Field Station)

- The USGS-Upper Midwest Environmental Science Center (UMESC) is in La Crosse, WI.
- Additional information needs can be directed to:

Jeff Houser, LTRM Science Director

Email: jhouser@usgs.gov

Phone: 608-781-6262

Q&As

What is UMRR?

The Upper Mississippi River Restoration (UMRR) program is the first comprehensive program for ecosystem restoration, scientific research, and monitoring on a large river system in the Nation and the world. The research and monitoring are executed through Long Term Resource Monitoring (LTRM), and restoration is achieved through construction of Habitat Rehabilitation and Enhancement Projects (HREPS).

What is LTRM?

Long Term Resource Monitoring (LTRM), combines environmental monitoring, research, systemic data acquisition, and modeling to provide a solid scientific foundation upon which many agencies base management actions and policy for the Upper Mississippi River System.

Why is Long Term Resource Monitoring important?

The LTRM information is used extensively by natural resource managers, planners, administrators, scientists, academics, legislators, and the general public for improved understanding, problem solving, targeted ecosystem restoration and informed decision-making about the issues important to the UMRS.

How is LTRM funded?

Congress appropriates funds to UMRR through the U.S. Army Corps of Engineers, which then transfers funds to the other federal and state implementing partners to support their legislative responsibilities. LTRM is implemented by the U.S. Geological Survey (USGS) in cooperation with the five UMRS states: Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

What information is included in the report?

The 2022 Status and Trends report includes detailed water quality, aquatic vegetation, and fisheries data from six unique study areas as well as select UMRS data for possible drivers of UMRS ecological dynamics, including hydrology, geomorphology, and land cover. These data provide river managers with the data and science needed for effective multipurpose management for this nationally significant navigation and ecosystem.

When were the other two status and trends reports published?

Previous reports on the status and trends of the UMRS were published in 1998 and 2008.

Q&As (continued)

How is LTRM data collected?

Monitoring is conducted from six state-operated field stations, located on the Upper Mississippi River in Pool 4 (Lake City, Minnesota), Pool 8 (La Crosse, Wisconsin), Pool 13 (Bellevue, Iowa), Pool 26 (Alton, Illinois), and the Open River reach (Cape Girardeau, Missouri), as well as the La Grange Pool of the Illinois River (Havana, Illinois).

Why does LTRM monitor water quality?

Water quality monitoring: temperature, dissolved oxygen, plant nutrients, and water clarity are critical determinants of habitat suitability.

Why does LTRM monitor aquatic vegetation?

Aquatic vegetation monitoring: aquatic vegetation helps sustain clearer water, provides important habitat for many aquatic animals, and is an important food source for migrating waterfowl.

Why does LTRM monitor fish communities?

Fish monitoring: the UMRS supports a diverse community of fishes that are critical components of the ecosystem, and support important cultural, recreational, and commercial activities [Photo]. The UMRS fish community contains some fishes of ancient evolutionary lineage (e.g., paddlefish, shovelnose sturgeon and pallid sturgeon have been around for ~ 70 million years). Because of the north-south orientation of the Upper Mississippi River, fishes have been able to move north and south to adapt to the long term fluctuations in climate.

Why does LTRM collect landcover data?

LTRM collects landcover data every 10 years and maintains a systemic data set of floodplain and river bottom elevation. Land cover data consists of maps of vegetation and developed lands. Mapping the vegetation provides information on food availability, nesting/spawning habitat, and shelter for fish and wildlife. Land cover data also provides insight into human effects within the floodplain.

Engagement Strategy

General updates & Information sharing				
Item	Method of Delivery	Frequency	Audience	Description
Coordinated press release	press, web, e-mail	One time	Public - agency partners, congressional interests, NGOs, any other interested parties	Announcement of release of the report
Social Media	web	One time	Public - agency partners, congressional interests, NGOs, any other interested parties	Animated GIF of high level report results (i.e., general talking points)
Congressional updates	in person, webinar, telephone	as needed	Members of Congress and staff	Briefings on the report content with time allotted for Q&A.
Stakeholder updates	in person, webinar, telephone	as needed	Agency partners, NGOs	Briefings on the report content with time allotted for Q&A.

Proposed Schedule

Date	Action
Report release date anticipated March 2022	Distribute coordinated press releases
After release date (TBD)	Share animated GIF of high-level report results (i.e., general talking points)
As needed	Respond to inquiries and requests for briefings

Notes:

Outreach activities have included:

- Meeting presentations (Internal)
- Conference presentations (External)

Future:

Press release

A "glossy" report summary (~4 pages) is anticipated in the future.

Coordinated Press Release

Agency	Common elements	Unique elements
USACE	This report is a significant accomplishment for UMRR and identifies important trends in the ecological conditions of the UMRS	 HREPs - Restoration continues to advance the good trends and mitigate future risks of hydrology and invasive species. Pulls together interdisciplinary partners to address issues.
USGS	The report synthesizes 25 years of long term resource monitoring data into a broadly accessible and concise description of what we have learned about changes in the UMRS from nearly three decades of monitoring	 Science – may want to emphasize the scientific integrity, robustness of data and analysis. Possibly include field stations?
UMRBA	and analysis.	Value of the partnership
USFWS	The UMRS is a large and diverse river system with many regional differences. Long-term monitoring across the system has allowed us to observe changes that have occurred widely across the system and those that have occurred only in parts of the system.	 Trends in the refuge system Partnership with the Corps improves the refuges How their work helps improve conditions systemically where there is not refuge lands
USEPA		•
States	Annual monitoring to assess the overall health and resilience of the ecosystem is fundamental to its	•
Other? (NRCS?)	restoration and management.	•

ATTACHMENT D

Program Reports

- Long Term Resource Monitoring and Science
 - Base Monitoring Scope of Work thru 1st Quarter of FY 2022 (2/4/2022) (D-1 to D-4)
 - FY 2022 UMRR Science Activities in Support of Restoration and Management (2/4/2022) (D-5 to D-12)
 - FY 2014 and FY 2015 UMRR Science Activities in Support of Restoration and Management (1/27/2022) (D-13)

Tracking	Milestone	Original	Modified	Date	Comments	Lead
number		Target Date	Target Date	Completed		
Aquatic Veg	etation Component					
2022A1	Complete data entry and QA/QC of 2021 data; 1250					
	observations.					
	a. Data entry completed and submission of data to	30-Nov-2021		30-Nov-2021		Lund, Carhart, Fopma
	USGS					
	b. Data loaded on level 2 browsers	15-Dec-2021		15-Dec-2021		Schlifer
	c. QA/QC scripts run and data corrections sent to	28-Dec-2021		28-Dec-2021		Sauer, Schlifer
	Field Stations					
	d. Field Station QA/QC with corrections to USGS	15-Jan-2022		15-Jan-2022		Lund, Carhart, Fopma
	e. Corrections made and data moved to public	30-Jan-2022				Larson, Schlifer, Caucutt
	Web Browser					
	Web-based: Creating surface distribution maps for					
2022A2	aquatic plant species in Pools 4, 8, and 13; 2021	31-Jul-2022				Larson, Schlifer
	data					
	Wisconsin DNR annual summary report 2021 that					
202242	combines current year observations from LTRM with	20 Cam 2022				Doutolo Hoff Kolos Combout
2022A3	previous years' data, for the fish, aquatic vegetation,	30-Sep-2022				Bartels, Hoff, Kalas, Carhart
	and water quality components.					
2022A4	Complete aquatic vegetation sampling for Pools 4,	31-Aug-2022				Lund, Carhart, Fopma
	8, and 13 (Table 1)					
2022A5	Pool 4: Graphical summary and maps of aquatic	30-Dec-2022				Lund
	vegetation current status and long-term trends.					
2022A6	Pool 8: Graphical summary and maps of aquatic	30-Dec-2022				Carhart
	vegetation current status and long-term trends.					
2022A6	Pool 13: Graphical summary and maps of aquatic	30-Dec-2022				Fopma
	vegetation current status and long-term trends.					
	· -	Inte	ended for distribution	on		•
Manuscript:	Estimated annual summer submersed aquatic macrophy	te standing stocks (1998 - 2018) in thre	e large reaches of the	Upper Mississippi River. (2020A8; accepted by Journal of Fish
and Wildlife	Management, IP-122160)					
Fisheries Co	mponent					
2022B1	Complete data entry, QA/QC of 2021 fish data;					
	~1,590 observations					
	a. Data entry completed and submission of data to					DeLain, Dawald, Bartels, Hine,
	USGS	31-Jan-2022		31-Jan-2022		Kueter, Gittinger, West,
						Solomon, Maxson
	b. Data loaded on level 2 browsers; QA/QC scripts run	15 Ech 2022				•
	and data corrections sent to Field Stations	15-Feb-2022				Ickes, Schlifer
						DeLain, Dawald, Bartels, Kueter,
	c. Field Station QA/QC with corrections to USGS	15-Mar-2022				Hine, Gittinger, West, Solomon,
						Maxson
	d. Corrections made and data moved to public	30-Mar-2022				Ickes and Schlifer
	Web Browser					

D-1

2/4/2022

Tracking	Milestone	Original	Modified	Date	Comments	Lead
number		Target Date	Target Date	Completed		
2022B2	Update Graphical Browser with 2021 data on	31-May-2022				Ickes and Schlifer
	Public Web Server.					
	Complete fisheries sampling for Pools 4, 8, 13, 26,					DeLain, Dawald, Bartels, Kueter,
2022B3	the Open River Reach, and La Grange Pool (Table 1)	31-Oct-2022				Hine, Gittinger, West, Solomon,
						Maxson
	IDNR Fisheries Management State Report: Fisheries					
2022B4	Monitoring in Pool 13, Upper Mississippi	30-Jun-2022				Kueter
	River, 2020-2021					
2022B5	Sample collection, database increment on Asian carp	31-Jan-2022		31-Jan-2022		Solomon, Maxson
202265	age and growth: collection of cleithral bones	21-JdH-2022		31-JdH-2022		Solomon, Maxson
2022B8(D)	Database increment: Stratified random day	30-Sep-2022				Kueter
	electrofishing samples collected in Pools 9–11					
2022B9(D)	Database increment: Stratified random day	30-Sep-2022				Kueter
	electrofishing samples collected in Pools 16–18					

Intended for distribution

LTRM Completion report, compilation of 3 years of sampling: Fisheries (2009R1Fish; Chick et al.) (in USGS review; minor grammatical corrections needed then will be posted on LTRM Fish page)

Manuscript: A synthesis on river floodplain connectivity and lateral fish passage in the Upper Mississippi River (2021B11; Submitted to USGS review; IP-123678)

LTRM Fact Sheet: Tree map tool for visualizing fish data, with example of native versus non-native fish biomass (2013B16) (Programming code for TreeMap being re-written; once completed Fact Sheet will be completed)

Water Qua	ality Component			
2022D1	Complete calendar year 2021 fixed-site and SRS water quality sampling	31-Dec-2021	31-Dec-2021	Jankowski, Burdis, Kalas, Johnson, L. Gittinger, Kellerhals, Sobotka
2022D2	Complete laboratory sample analysis of 2021 fixed site and SRS data; Laboratory data loaded to Oracle data base.	15-Mar-2022		Yuan, Schlifer
2022D3	1st Quarter of laboratory sample analysis (~12,600)	30-Dec-2021	30-Dec-2021	Yuan, Manier, Burdis, Kalas, Johnson, L. Gittinger, Cook, Sobotka
2022D4	2nd Quarter of laboratory sample analysis (~12,600)	30-Mar-2022		Yuan, Manier, Burdis, Kalas, Johnson, L. Gittinger, Kellerhals, Sobotka
2022D5	3rd Quarter of laboratory sample analysis (~12,600)	29-Jun-2022		Yuan, Manier, Burdis, Kalas, Johnson, L. Gittinger, Kellerhals, Sobotka
2022D6	4th Quarter of laboratory sample analysis (~12,600)	28-Sep-2022		Yuan, Manier, Burdis, Kalas, Johnson, L. Gittinger, Kellerhals, Sobotka
2022D7	Complete QA/QC of calendar year 2021 fixed-site and SRS data.			

D-2 2/4/2022

Tracking	Milestone	Original	Modified	Date	Comments	Lead
number		Target Date	Target Date	Completed		
	a. Data loaded on level 2 browsers; QA/QC scripts					
	run; SAS QA/QC programs updated and sent to	30-Mar-2022				Schlifer, Jankowski
	Field Stations with data.					
	b. Field Station QA/QC; USGS QA/QC.	15-Apr-2022				Jankowski, Burdis, Kalas,
						Johnson, L.
						Gittinger, Kellerhals, Sobotka
	c. Corrections made and data moved to public	30-Apr-2022				Schlifer, Jankowski
	Web Browser					
	Complete FY2020 fixed site and SRS sampling for					Jankowski, Burdis, Kalas,
2022D8	Pools 4, 8, 13, 26, Open River Reach, and La	30-Sep-2022				Johnson, L. Gittinger, Kellerhals,
	Grange Pool					Sobotka
2022D9	WEB-based annual Water Quality Component	30-May-2022				Schlifer, Jankowski
	Update w/2021 data on Server.					
2022D10	Operational Support to the UMRR LTRM Element.	30-Sep-2022				Kalas, Hoff, Bartel, Carhart
	Serve as in-house Field Station for USGS for					
	consultation and support on various LTRM-wide					
	topics					
			On-Going			
2019D12	Draft LTRM Completion Report: Assessment of	30-Dec-2019	30-Jun-2022		Lead (Fulgoni) took new position	Jankowski
	Phytoplankton Samples collected by the Upper					
	Mississippi River Restoration Program-Long Term					
	Resource Monitoring Water Quality Component					
2020D12	Final LTRM Completion Report: Assessment of	30-Mar-2021	30-Dec-2022			Jankowski
	Phytoplankton Samples collected by the Upper					
	Mississippi River Restoration Program-Long Term					
	Resource Monitoring Water Quality Component					
		Inte	ended for distributio	n		

Completion report, compilation of 3 years of sampling: Water Quality (2009R1WQ; Giblin, Burdis) (in USGS review; minor grammatical corrections needed then will be posted on LTRM WQ page)

Manuscript: Nutrients and dissolved oxygen in the UMRS: improving our understanding of winter conditions and their implications for structure and function of the river (2014D12; Houser)

Spatial Dat	Spatial Data Component							
2022SD1	Orthorectification of scanned photos (Rock Island	30-Sep-2022				Strange		
2022301	District - Mississippi River)	30-3ep-2022				Stratige		
2022SD2	Flight Plan Content/Data Pack	31-Dec-2021		31-Dec-2021		Finley		
2022SD3	Fact Sheet or website text on UAS Rapid Response	30-Jun-2022				Finley		
	Imaging	30-3011-2022						
2022SD4	Aerial Thermal Application Completion Report	30-Sep-2022				Finley		
2022SD5	Spatial Point Repository Tool of UMRS	30-Sep-2022				Finley		
2022SD7	Pattern of Wild Rice Colonization and Retreat Dataset	30-Sep-2022				Finley		
2022SD8	Maintenance ArcGIS server	30-Sep-2022				Fox, Rohweder		
2022SD9	3D Digital Environment from Aerial Imagery using	31-Mar-2022				Finley		
	Structure from Motion Workflow Documentation							

D-3 2/4/2022

Tracking	Milestone	Original	Modified	Date	Comments	Lead
number		Target Date	Target Date	Completed		
2022LD10	Active Remote Sensing Capability Addition to Crewed Aerial Survey Assets 2022	30-Jun-2022				Finley
2022SD11	Draft Report: Report to Congress Sections	30-Sep-2022				De Jager
2022SD12	Data Set: Land Cover Change in the UMRS Key Pools 1989-2020	30-Sep-2022				De Jager
2022SD13	Final 3D Vegetation Mapping Solution SOP (draft 2021SD2)	31-Mar-2022				Finley
2022SD14	Survey Capability and Historic Spatial Database for LCU Mapping in-house report (draft 2021D6)	31-Mar-2022				Finley
			On-Going			
2021SD7	Topobathy strategic plan	30-Sep-2022				Strange, De Jager
2021SD10	Draft Report: Evaluating effects of alternative flooding scenarios on forest succession and landcover in the UMRS.	30-Sep-2021	30-Sep-2022		Changing to a manuscript	De Jager
Data Manag				•		
2022M1	Update vegetation, fisheries, and water quality component field data entry and correction applications.	30-May-2022				Schlifer
2022M2	Load 2020 component sampling data into Database tables and make data available on Level 2 browsers for field stations to QA/QC.	30-Jun-2022				Schlifer
2022M3	Assist LTRM Staff with development and review of metadata and databases in conjunction with publishing of reports and manuscripts	On-going				Schlifer
Status and T	rends 3rd edition					
2021ST3	Revised draft to UMESC Center Director and USGS Bureau Approving Official	23-Apr-2021	21-Feb-2022		Edit text and figures received by USGS Publishing network; final author review on-going	AII
2021ST4	Final publication	28-May-2022				All
2020ST4	Draft S&T3 Fact Sheet	TBD			Tied to completion of S&T3	All
Equipment I	nventory					
2021ER1	Property inventory and tracking	15-Nov-2022				LTRM staff as needed

D-4 2/4/2022

FY2022 Science in Support of Restoration and Management Scope of Work

Tracking	Milestone	Original Target	Modified Target	Date	Comments	Lead
number	Milestone	Date	Date	Completed	Comments	Ledd
	Ind Applying Indicators of Ecosystem Resilience to th		Date	Completed		
2022R1	Updates provided at quarterly UMRR CC meeting					Bouska, Houser
2022111	and	Various				Bousku, Housel
	A team meeting as appropriate	0 0.10 0.0				
2022R2	Submit manuscript that investigates associations					
	between general and specified resilience for peer	30-Sep-2022				Bouska
	review publication	40000				
	Transmission Page 1997		On-Going			
2024 B2	Submit resilience assessment synthesis	20.142024				B. J.
2021R3	manuscript for peer review publication	30-Mar-2021	30-Sep-2022			Bouska
2021R4	Submit resilience assessment synthesis fact sheet	30-Sep-2021				
1	for	-	30-Sep-2022			Bouska
	USGS peer review					
	Submit manuscript that investigates associations				Changed from	
	between general and specified resilience for peer				anuscript that	
	review publication				investigates	
2021R5		30-Sep-2021	31-Dec-2021	31-Dec-2021	associations	Bouska
					between general	
					and specified	
					resilience in FY21	
•	tern Research and Application					
2022LP1	Data Analysis: 2020 Land Cover Change					Rohweder and De Jager
	Data Analysis: Reed canary grass habitat					
2022LP2	suitability modeling using forestry data, flood	30-Sep-2022				Delaney and Rohweder
	inundation metrics, and landscape patterns.					
	Draft Report: Reed canary grass habitat suitability					Delaney, De Jager, Van Appledorn, Bouska,
2022LP3	modeling using forestry data, flood inundation	30-Sep-2022				Rohweder
	metrics, and landscape patterns.				<u> </u>	
	Ta . a		On-Going	1		
	Data Development: Developing seasonal aquatic					
2021LP4	areas maps to support aquatic habitat mapping	30-Sep-2021	30-Sep-2022			Rohweder
20241.04	and	20.4 . 2024			Field week fee	B.L L.
2021LP1	Geospatial analyses in support of the Forest Gap	30-Aug-2021	20.0 2022		Field work for	Rohweder
	project		30-Sep-2022		analysis delayed	
Manus animt. Da	priore of Landacora Foology on the UNAR. Do Jacon 2	01613			due to Covid-19	
Eco-hydrologic	eview of Landscape Ecology on the UMR; De Jager; 2	010F2				
2022EH1	Spatial analyses of backwater sedimentation	30-Sep-2022				Van Appledorn, Rohweder, DeJager
ZUZZLIII	patterns through time to support vulnerability	30-36h-2022				van Appieuom, Nonweuer, Dejager
2022EH2	Characterization of hydrologic/flooding regimes	30-Sep-2022			1	Van Appledorn
2022L112	of non-forested areas to support eco-hydrologic	30-36p-2022				ναιτΑρρισασιτί
ĺ	modeling efforts					
<u> </u>	inioneinik enorra			<u> </u>	1	ļ

D-5

2/4/2022

FY2022 Science in Support of Restoration and Management Scope of Work

Tracking	Milestone	Original Target	Modified Target	Date	Comments	Lead		
number		Date	Date	Completed				
On-Going On-Going								
2020EH02	Submit manuscript of temporal patterns in UMRS	30-Sep-2021	30-Sep-22			Van Appledorn, De Jager,		
	inundation regimes for peer review		50-5ep-22			Rohweder		
	Draft manuscript of temporal and spatial trends				Delayed due to			
2021EH01	of large wood in the UMRS and potential eco-	30-Sep-2021	30-Dec-21		ST3 priority	Van Appledorn, Jankowski		
	hydrologic drivers				switch			
2021EH02	Draft manuscript of UMRS floodplain forest	30-Sep-2021	20 Jun 22			Van Appledorn, De Jager		
	classification		30-Jun-22					

Development of UMRS inundation model query tool; Van Appledorn, Fox, Rohweder, De Jager; 2019EH03

Manuscript: Van Appledorn, M., De Jager, N.R. Considerations for improving floodplain research and management by integrating inundation modeling, ecosystem studies, and ecosystem services (2016L5; see 2019EH01) (Resubmitted to journal after revisions)

Intended for distribution

Manuscript: Modeling and mapping inundation regimes for ecological and management applications: a case study of the Upper Mississippi River floodplain, USA; Van Appledorn, De Jager, Rohweder Research and Applications, Early View On-Line Special Edition. http://dx.doi.org/10.1002/rra.3628 Location of supporting data: https://doi.org/10.5066/F7VD6XRT)

Acquisition	Acquisition and Interpretation of Imagery for Production of 2020 UMRS Land Cover/Land Use Data and Pool-Based Orthomosaics									
	Image processing, stereo model development,									
	orthorectification, pool-based mosaicking, image	1-Sep-2022								
2020LCU3	interpretation, automation, QA/QC, and serving		2022			Dieck, Strassman				
20201003	of 2020 LCU datasets for remaining 50% of Open					Dieck, Strassifian				
	River South, the Alton Pool of the Illinois River,									
	and Pools 9-12									

Aquatic Vegetation, Fisheries, and Water Quality Research

Intended for Distribution

Manuscript: Estimated annual summer submersed aquatic macrophyte standing stocks (1998 - 2018) in three large reaches of the Upper Mississippi River. (2020A8; accepted by Journal; Drake, Lund, Bales, Kreiling; IP-122160)

Manuscript: Evidence of functionally defined non-random fish community responses over 25 years in a large river system (Ickes; 2019B13 replacing 2015B17 and 2016B17; (Not accepted at journal, resubmitting to Hydrobiologia)

Manuscript: The ecology of ice across the river continuum (New tracking number 2021RC1) Sharma, S., Meyer, M.F., Culpepper, J., Yang, X., Hampton, S., Berger, S.A., Brousil, M.R., Fradkin, S.C., Higgins, S.N., Jankowski, K.J., Kirillin, G., Smits, A.P., Whitaker, E.C., Yousef, F., Zhang, S. 2020. Integrating Perspectives to Understand Lake Ice Dynamics in a Changing World. Journal of Geophysical Research: Biogeosciences. 125: e2020JG005799.

Manuscript: Warmer winters increase phytoplankton biomass in a large floodplain river. Jankowski, K. J., J. N.Houser, M. D. Scheuerell, and A. P. Smits. 2021. Warmer winters increase the biomass of phytoplankton in a large floodplain river. Journal of Geophysical Research: Biogeosciences. Volume 126, Issue 9. https://doi.org/10.1029/2020JG006135. Data available at: https://umesc.usgs.gov/data_library/water_quality/water_quality_page.html

Statistical Evaluation

Intended for distribution

D-6

Manuscript: Inferring decreases in among- backwater heterogeneity in large rivers using among-backwater variation in limnological variables (2010E1; IP-027392; Gray; in journal review)

Manuscript: Model selection for ecological community data using tree shrinkage priors; Gray, Hefley, Zhang, Bouska; (2017FA2; IP-111931; in revision with Ecological Applications)

Manuscript: Probabilities of detecting submersed aquatic vegetation species using a rake method may vary with biomass; 2020E1; Completed; Aquatic Botany, 171:103375, https://doi.org/10.1016/j.aquabot.2021.103375

2/4/2022

FY2022 Science in Support of Restoration and Management Scope of Work

Tracking	Milestone	Original Target	Modified Target	Date	Comments	Lead
number		Date	Date	Completed		
Pool 12 Overv	vintering HREP Adaptive Management Fisheries Res	sponse Monitorir	ng			
2022P13d	Age determination of bluegills	1-Feb-2022				Kueter
2022P13e	In-house project databases updated	31-Mar-2022				Kueter
2021P13f	Made available to program partners via Fish Mgmt. State report (2021B4) (2021 and 2021)	30-Sep-2021	30-Jun-2022			Kueter
Pool 4 - Peters	son Lake HREP Water Quality Monitoring – Pre and	Post-Adaptive M	lanagement Evaluation			
2022PL1	Summary letter: Describing 2022 monitoring and future work	Dec. 2022				Burdis, Lund
Science Meeti						
	FY18 Fu	ınded Science in	Support of Restoration	and Management Pro	posals	
Conceptual M	lodel and Hierarchical Classification of Hydrogeomo	rphic Settings in	the UMRS			
2019CM4	GIS data base and query tool	31-Dec-2019	On-going		Prototype developed	Fitzpatrick, Hendrickson, Sawyer, Strange
2019CM5	Submit draft LTRM Completion report on hydrogeomorphic conceptual model and hierarchical classification system	31-Dec-2019	30-Mar-2022			Fitzpatrick, Hendrickson, Sawyer, Strange
2019CM6	Submit Final LTRM Completion report on hydrogeomorphic conceptual model and hierarchical classification system	30-Jun-2020	30-Dec-2022			Fitzpatrick, Hendrickson, Sawyer, Strange
Water Exchan	age Rates and Change in UMRS Channels and Backw	aters, 1980 to Pr	esent			
2019WE4	Submit Final LTRM Completion Report	30-Mar-2020	30-Dec-2021			Hendrickson
Intrinsic and e	extrinsic regulation of water clarity over a 950-km lo	ongitudinal gradi	ent of the UMRS			
2019IE3	Submit Draft manuscript	30-Mar-2020	30-Mar-23	Pls determined that the biomass information continue work once the complete. Original Le resigned from WDNR	is needed. Will biomass model ad author (Drake)	Carhart and others
Systemic analy	ysis of hydrogeomorphic influences on native fresh	water mussels				
2019FM7	Complete statistical analyses and prepare geospatial maps	30-Sep-2021	30-Sep-2022	Delayed since lead to to perform most of the new position; new	he analyses took a	Teresa Newton, Jason Rohweder
2019FM8	Draft LTRM completion report	30-Sep-2021	30-Sep-2022	1		Teresa Newton
2019FM9	Final LTRM completion report	30-Jan-2023				Teresa Newton
Using dendroo	chronology to understand historical forest growth,	stand developme	ent, and gap dynamics			
2022DD1	Draft manuscript: Floodplain forest structure and the recent decline of Carya illinoinensis (Wangenh.) K. Koch (northern pecan); Part 2	30-May-2022				Harley

D-7 2/4/2022

FY2022 Science in Support of Restoration and Management Scope of Work

Tracking	Milestone	Original Target	Modified Target	Date	Comments	Lead
number		Date	Date	Completed		
2022DD2	Draft manuscript: Floodplain forest structure and the recent decline of Carya illinoinensis (Wangenh.) K. Koch (northern pecan); Part 3	30-May-2022				Maxwell

D-8 2/4/2022

FY2022 Science in Support of Restoration and Management Scope of Work

Tracking number	Milestone	Original Target Date	Modified Target Date	Date Completed	Comments	Lead
	gap dynamics: quantifying forest gaps and underst	anding gap – leve				
Manuscript: Fo found at: https	orest canopy gap dynamics: quantifying forest gaps as://www.sciencebase.gov/catalog/item/5f3299a682	nd understanding cee144fb30dd02	ggap - level forest regen	eration in Upper Missi	ssippi River floodp	olain forests (2019FG5, MEIER et al.); Gap data
	rital rate drivers of UMRS fishes to support manage			L Dandomic has slow	od progress on	
2019VR8	Data set complete (data delivered to Ben Schlifer, physical structures delivered to BRWFS)	30-Sep-2021	30-Mar-22	Pandemic has slowed progress on many aspects of age and growth. Closed labs, buildings and limited employees. Wrapping up on QA/QC on ages and wrapping up the last couple otoliths left.		Quinton Phelps
			On-Going			
2019VR10	Submit draft manuscript (Drivers of vital rates)	31-Dec-2021	30-Jun-22			Quinton Phelps, Kristen Bouska
2019VR11	Submit draft manuscript (Microchemistry)	31-Dec-2021	30-Jun-22			Greg Whitledge
	<u> </u>		Intended for distirbuti	on		
Manuscript: vit	tal rates of Channel Catfish, led by Colby Gainer (MS	student) in review			Management; 20	19VR9
			ce in Support of Restora			
Development of	of a standardized monitoring program for vegetation	on and fish respo	nse to Environmental P	ool Management prac	tices in the Upper	Mississippi River System
2019epm3/4	Thesis by Courtney Weldon (formerly LTRM Completion Report)	30-Jun-2021	30-Jun-22	Field work delayed due to Covid-19		Weldon, Chick, and Richter
Combining ger	netics, otolith microchemistry, and vital rate estima	ation to inform re	storation and manager	nent of fish population	ns in the UMRS	
			Intended for distirbut			
	cumenting the findings from genetic analyses of the		es has been accepted to	the journal Molecular	Ecology; Dr. Yue S	Shi
	MRS forest canopy openings occupied by invasive s	i i		ı		
2019ref3	Draft LTRM Completion	30-Apr-2021	30-Dec-22			Guyon and Cosgriff
2019ref4	Final LTRM Completion	30-Sep-2021	30-Jun-23			Guyon and Cosgriff
A year of zoop	lankton community data from the habitats and po	ols of the UMR				
2019zoo2	Draft LTRM Completion report on utility of zooplankton community monitoring for HREP assessment	30-Dec-2020	TBD			Sobotka
2019zoo3	Final LTRM Completion report on utility of zooplankton community monitoring for HREP assessment	30-Jun-2021	TBD	Sample collection de	layed because of	Sobotka
2019zoo4	Draft LTRM Completion report on detailing differences between pools and habitats. Report will also investigate the potential investigate the potential impacts of Asian carp on the zooplankton community.	30-Dec-2020	TBD	Sample collection delayed because of Covid-19 state protocols; zooplankton ID delayed; Fulgoni took new position		Sobotka
2019zoo5	Final LTRM Completion report on on detailing differences between pools and habitats. Report will also investigate the potential investigate the potential impacts of Asian carp on the	30-Jun-2021	TBD			Sobotka

D-9 2/4/2022

FY2022 Science in Support of Restoration and Management Scope of Work

Tracking	Milestone	Original Target	Modified Target	Date	Comments	Lead
number		Date	Date	Completed		
		<u> </u>	ed Illinois Waterway 20	<u>' </u>		
Pre- and Post-	Maintenance Aerial Imagery for Illinois River's Alto					
2022IWW	Complete the imagery review and reporting	30-Aug-2022	•			Strassman
Fish Communi	ty Response to the 2020 Illinois Waterway Lock Clo					
2022FSH1	Draft Manuscript: Fisheries and WQ	31-Dec-22				Lamer
	FY	20 Funded Scien	ce in Support of Restor	ation and Managemer	nt	
Mapping Pote	ential Sensitivity to Hydrogeomorphic Change i	n the UMRS Riv	erscape and Develop	ment of Supporting	GIS Database and	d Query Tool
2021HG5	Complete annual project summary	31-Dec-2021	30-Mar-22			Strange, Fitzpatrick
2021HG6	Submit draft LTRM Completion report on	31-Dec-2021	30-Sep-22			Vaughn, Strange,
	hydrogeomorphic change GIS database and query					Fitzpatrick, Van Appledorn, USACE core team
	system					
2021HG7	Submit Final LTRM Completion report on	30-Mar-2022	31-Dec-22			Vaughn, Strange,
	hydrogeomorphic change GIS database and query					Fitzpatrick, Van Appledorn, USACE core team
	tool.					
	understanding of historic, contemporary, and futu					
2021HH1	Historic and Contemporary Hydrologic Database	30-Sep-2021	30-Sep-22	Awaiting final data delivery from		M. Van Appledorn, L. Sawyer
	Release and Documentation			USACE Water Control Chiefs (2 of 3		
				districts have submitted historic data and documentation; 1 district has		
				submitted docum	• • • • • • • • • • • • • • • • • • • •	
				awaiting USACE hydr	-	
				switch completio	_	
				contempor	ary data	
2021HH2	Draft LTRM Completion Report: document	30-Dec-2021	31-July-2022	Dependent on data		M. Van Appledorn, L. Sawyer
	database and documentation development steps,			acquisition from		
	database capabilities, and quantitative			USACE		
	summaries of the					
	hydrologic regime through time.					
2021HH3	Final LTRM Completion Report: document	31-Mar-2022	30-Sept-2022			M. Van Appledorn, L. Sawyer
	database and documentation development steps,					
	database capabilities, and quantitative					
20241114	summaries of the	20.0		27.12022		NA March Assistance I. Co.
2021HH4	Developing Future Hydrologic Scenarios	30-Dec-2021		27-Jan-2022		M. Van Appledorn, L. Sawyer
	Workshop: topics include identify appropriate					
	future climate and/or land-use scenarios for use					
	in a UMRS watershed model, existing hydrologic					
	modeling resources and capabilities, and logistics					
	for completing a climate-changed hydrologic					
	modeling					

D-10 2/4/2022

FY2022 Science in Support of Restoration and Management Scope of Work

Tracking	Milestone	Original Target	Modified Target	Date	Comments	Lead
number		Date	Date	Completed		
2021HH5	Draft LTRM Completion Report (Scenarios): This report will serve as the blueprint for modeling future hydrology to be undertaken with future funding opportunities.	31-Mar-2022	30-June-2022		delayed due to science meeting priority switch and 1-month delay in completion of	M. Van Appledorn, L. Sawyer
2021HH6	Final LTRM Completion Report (Scenarios): This report will serve as the blueprint for modeling future hydrology to be undertaken with future funding opportunities.	30-Jun-2022	30-Sept-2022			M. Van Appledorn, L. Sawyer
Understanding	g physical and ecological differences among side ch	annels of the Up	per Mississippi River Sys	tem		
2021SC3	Manuscript on side channel classification scheme submitted for peer review	30-Sep-2022				Sobotka, Strange, Bouska, McCain, Theel
2021SC4	Final report on UMRR management implications submitted for USGS review	30-Sep-2022				Sobotka & McCain
2021SC5	Manuscript on benthic invertebrate associations with side channel characteristics submitted for USGS and peer review	30-May-2023				Sobotka & Vander Vorste
Refining our U	Ipper Mississippi River's ecosystem states framewo	ork				
2021SS8	TDA Mapper, regime shifts	1-May-2022				Bungula, student, Larson
2021SS9	Draft the STM, share with stakeholders	1-Sep-2022				Larson
2021SS10	Technical report, vulnerability assessment tool, and	1-Sep-2022				All
Augmenting th	he UMRR fish vital rates project with greater specie	s representation	for genetics and otolith	microchemistry		
2021VR3	Submit draft manuscript (genetics)	31-Dec-2022				Davis, Tan, Lamer
2021VR4	Submit draft manuscript (genetics -	31-Dec-2022				Davis, Tan, Lamer
2021VR5	Submit draft manuscript (constructing management	31-Dec-2022				Bartels, Bouska, Davis, Lamer, Larson, Phelps, Tan, Whitledge

D-11 2/4/2022

FY2022 Science in Support of Restoration and Management Scope of Work

Tracking number	Milestone	Original Target Date	Modified Target Date	Date Completed	Comments	Lead	
Functional UN	unctional UMRS fish community responses and their environmental associations in the face of a changing river: hydrologic variability, biological invasions, and habitat rehabilitation						
2021FF2	Draft manuscript: "Has large scale ecosystem rehabilitation altered functional fish community expressions in the Upper Mississippi River	30-Sep-2021	30-Jun-2022			Ickes and Gatto	
2021FF3	Draft Manuscript: "Why aren't bigheaded carps (Hypophthalmichthys sp.) everywhere in the Upper Mississippi River System?"	30-Sep-2021	30-Sep-2022			Ickes and Gatto	
Understandin	g landscape-scale patterns in winter conditions in t	he Upper Mississ	ippi River System				
2021WL1	System wide spatial layers of habitat conditions	30-Sep-2022				Mooney, Dugan, Magee	
2021WL2	Draft manuscript: Landscape scale controls on overwintering habitat in a large river	30-Sep-2022				Mooney, Dugan, Jankowski, Magee	
2021WL3	Draft manuscript: Response of oxygen dynamics to	30-Sep-2023				Jankowski, Dugan, Burdis, Kalas, Kueter	
2021WL4	Draft Manuscript: Patterns in sediment characteristics and oxygen demand across a winter	30-Sep-2023				Perner, Kreiling, Jankowski, Giblin	
Forest Respon	nse to Multiple Large-Scale Inundation Events						
2021FR3	Technical Report	1-Jun-2022				Cosgriff, Guyon, De Jager	

D-12 2/4/2022

UMRR Science in Support of Restoration and Management FY2014 and FY2015 Scopes of Work February 2022 Status

Tracking	Milestone	Original	Modified	Date	Comments	Lead	
number	Willestoffe	Target Date	Target Date	Completed	Comments	Leau	
Plankton com	Plankton community dynamics in Lake Pepin						
2015LPP1	Phytoplankton processing; species composition, biovolume	30-Dec-15		22-Oct-15		Burdis	
2015LPP2	draft manuscript: Plankton community dynamics in Lake Pepin	30-Sep-16	30-Jun-22		good progress, presentations this fall	Burdis, Manier	
Predictive Aqu	ative Cover Type Model - Phase 2						
2015AQ1	Develop 2-D hydraulic model of upper Pool 4	30-Sep-15		30-Sep-15		Libbey (MVP H&H)	
2015AQ2	Apply model to Pool 4 and resolve discrepancies	31-Dec-15	31-Mar-16	31-Mar-16		Yin, Rogala	
2015AQ3	Detailed summary of work for Phases I & II	31-Dec-15		NA	Work terminated with resignation of Dr. Yin. Danelle Larson will re- evaluate vegetation modeling in a future time frame	Sauer (for Yin), Rogala, Ingvalson	

ATTACHMENT E

Additional Items

- Future Meeting Schedule (E-1)
- Frequently Used Acronyms (12/21/2017) (E-2 to E-7)
- UMRR Authorization, As Amended (1/11/2021) (E-8 to E-11)
- UMRR (EMP) Operating Approach (5/2006) (E-12)

QUARTERLY MEETINGS FUTURE MEETING SCHEDULE

MAY 2022						
	Location to be determined					
May 24	UMRBA Quarterly Meeting					
May 25	UMRR Coordinating Committee Quarterly Meeting					

AUGUST 2022							
	Location to be determined						
August 9 August 10	UMRBA Quarterly Meeting UMRR Coordinating Committee Quarterly Meeting						

Acronyms Frequently Used on the Upper Mississippi River System

AAR After Action Report

A&E Architecture and Engineering

ACRCC Asian Carp Regional Coordinating Committee

AFB Alternative Formulation Briefing
AHAG Aquatic Habitat Appraisal Guide
AHRI American Heritage Rivers Initiative

AIS Aquatic Invasive Species
ALC American Lands Conservancy
ALDU Aquatic Life Designated Use(s)

AM Adaptive Management
ANS Aquatic Nuisance Species

AP Advisory Panel

APE Additional Program Element

ARRA American Recovery and Reinvestment Act
ASA(CW) Assistant Secretary of the Army for Civil Works

A-Team Analysis Team

ATR Agency Technical Review
AWI America's Watershed Initiative
AWO American Waterways Operators

AWQMN Ambient Water Quality Monitoring Network

BA Biological Assessment

BATIC Build America Transportation Investment Center

BCR Benefit-Cost Ratio

BMPs Best Management Practices

BO Biological Opinion

CAP Continuing Authorities Program
CAWS Chicago Area Waterways System
CCC Commodity Credit Corporation
CCP Comprehensive Conservation Plan

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CEQ Council on Environmental Quality

CFR Code of Federal Regulations

CG Construction General

CIA Computerized Inventory and Analysis
CMMP Channel Maintenance Management Plan

COE Corps of Engineers
COPT Captain of the Port
CPUE Catch Per Unit Effort

CRA Continuing Resolution Authority

CREP Conservation Reserve Enhancement Program

CRP Conservation Reserve Program
CSP Conservation Security Program
CUA Cooperative Use Agreement

CWA Clean Water Act

DALS Department of Agriculture and Land Stewardship

DED Department of Economic Development

DEM Digital Elevation Model

DET District Ecological Team

DEWS Drought Early Warning System
DMMP Dredged Material Management Plan
DNR Department of Natural Resources

DO Dissolved Oxygen

DOA Department of Agriculture
DOC Department of Conservation

DOER Dredging Operations and Environmental Research

DOT Department of Transportation

DPR Definite Project Report

DQC District Quality Control/Quality Assurance

DSS Decision Support System
EA Environmental Assessment

ECC Economics Coordinating Committee
EEC Essential Ecosystem Characteristic
EIS Environmental Impact Statement

EMAP Environmental Monitoring and Assessment Program

EMAP-GRE Environmental Monitoring and Assessment Program-Great Rivers Ecosystem
EMP Environmental Management Program [Note: Former name of Upper Mississippi

River Restoration Program.]

EMP-CC Environmental Management Program Coordinating Committee

EO Executive Order

EPA Environmental Protection Agency

EPR External Peer Review

EQIP Environmental Quality Incentives Program

ER Engineering Regulation

ERDC Engineering Research & Development Center

ESA Endangered Species Act

EWMN Early Warning Monitoring Network

EWP Emergency Watershed Protection Program

FACA Federal Advisory Committee Act

FEMA Federal Emergency Management Agency FERC Federal Energy Regulatory Commission

FDR Flood Damage Reduction FFS Flow Frequency Study

FONSI Finding of No Significant Impact

FRM Flood Risk Management

FRST Floodplain Restoration System Team

FSA Farm Services Agency FTE Full Time Equivalent

FWCA Fish & Wildlife Coordination Act

FWIC Fish and Wildlife Interagency Committee

FWS Fish and Wildlife Service FWWG Fish and Wildlife Work Group

FY Fiscal Year

GAO Government Accountability Office
GEIS Generic Environmental Impact Statement

GI General Investigations

GIS Geographic Information System
GLC Governors Liaison Committee
GLC Great Lakes Commission

GLMRIS Great Lakes and Mississippi River Interbasin Study

GPS Global Positioning System

GREAT Great River Environmental Action Team

GRP Geographic Response Plan
HAB Harmful Algal Bloom
HEL Highly Erodible Land

HEP Habitat Evaluation Procedure HNA Habitat Needs Assessment

HPSF HREP Planning and Sequencing Framework

HQUSACE Headquarters, USACE H.R. House of Representatives

HREP Habitat Rehabilitation and Enhancement Project

HU Habitat Unit

HUC Hydrologic Unit Code IBA Important Bird Area

IBI Index of Biological (Biotic) Integrity

IC Incident Commander

ICS Incident Command System

ICWP Interstate Council on Water Policy
IDIQ Indefinite Delivery/Indefinite Quantity
IEPR Independent External Peer Review
IIA Implementation Issues Assessment

IIFO Illinois-Iowa Field Office (formerly RIFO - Rock Island Field Office)

ILP Integrated License Process

IMTS Inland Marine Transportation System
 IRCC Illinois River Coordinating Council
 IRPT Inland Rivers, Ports & Terminals
 IRTC Implementation Report to Congress

IRWG Illinois River Work Group
ISA Inland Sensitivity Atlas
IWR Institute for Water Resources

IWRM Integrated Water Resources Management

IWTF Inland Waterways Trust FundIWUB Inland Waterways Users Board

IWW Illinois Waterway
L&D Lock(s) and Dam
LC/LU Land Cover/Land Use
LDB Left Descending Bank

LERRD Lands, Easements, Rights-of-Way, Relocation of Utilities or Other Existing

Structures, and Disposal Areas

LiDAR Light Detection and Ranging LMR Lower Mississippi River

LMRCC Lower Mississippi River Conservation Committee

LOI Letter of Intent

LTRM Long Term Resource Monitoring

M-35 Marine Highway 35

MAFC Mid-America Freight Coalition
MARAD U.S. Maritime Administration
MARC 2000 Midwest Area River Coalition 2000

MICRA Mississippi Interstate Cooperative Resource Association

MIPR Military Interdepartmental Purchase Request

MMR Middle Mississippi River

MMRP Middle Mississippi River Partnership MNRG Midwest Natural Resources Group

MOA Memorandum of Agreement

MoRAST Missouri River Association of States and Tribes

MOU Memorandum of Understanding

MRAPS Missouri River Authorized Purposes Study

MRBI Mississippi River Basin (Healthy Watersheds) Initiative

MRC Mississippi River Commission

MRCC Mississippi River Connections Collaborative
MRCTI Mississippi River Cities and Towns Initiative
MRRC Mississippi River Research Consortium
MR&T Mississippi River and Tributaries (project)

MSP Minimum Sustainable Program MVD Mississippi Valley Division

MVP St. Paul District
MVR Rock Island District
MVS St. Louis District

NAS National Academies of Science NAWQA National Water Quality Assessment

NCP National Contingency Plan

NIDIS National Integrated Drought Information System (NOAA)

NEBA Net Environmental Benefit Analysis

NECC Navigation Environmental Coordination Committee

NED National Economic Development NEPA National Environmental Policy Act

NESP Navigation and Ecosystem Sustainability Program
NETS Navigation Economic Technologies Program

NGO Non-Governmental Organization

NGRREC National Great Rivers Research and Education Center

NICC Navigation Interests Coordinating Committee
NPDES National Pollution Discharge Elimination System

NPS Non-Point Source
NPS National Park Service
NRC National Research Council

NRCS Natural Resources Conservation Service

NRDAR Natural Resources Damage Assessment and Restoration

NRT National Response Team

NSIP National Streamflow Information Program

NWI National Wetlands InventoryNWR National Wildlife RefugeO&M Operation and Maintenance

OHWM Ordinary High Water Mark

OMB Office of Management and Budget

OMRR&R Operation, Maintenance, Repair, Rehabilitation, and Replacement

Oil Pollution Act of 1990 **OPA**

ORSANCO Ohio River Valley Water Sanitation Commission

OSC On-Scene Coordinator Other Social Effects **OSE OSIT** On Site Inspection Team P3 **Public-Private Partnerships** PA Programmatic Agreement **PAS** Planning Assistance to States Principles and Guidelines P&G P&R Principles and Requirements P&S Plans and Specifications Principles and Standards P&S **PCA** Pollution Control Agency

PCA Project Cooperation Agreement PCX Planning Center of Expertise

PDT Project Delivery Team

PED Preliminary Engineering and Design

PgMP Program Management Plan **PILT** Payments In Lieu of Taxes PIR Project Implementation Report

PL Public Law

Project Management Plan **PMP PORT** Public Outreach Team

PPA Project Partnership Agreement

PPT Program Planning Team

Quality Assurance/Quality Control QA/QC

RCRA Resource Conservation and Recovery Act

RCP Regional Contingency Plan

Regional Conservation Partnership Program **RCPP**

Right Descending Bank RDB

Regional Economic Development **RED**

RIFO Rock Island Field Office (now IIFO - Illinois-Iowa Field Office)

E-6

RM River Mile

RP Responsible Party **RPT** Reach Planning Team

RRAT River Resources Action Team

RRCT River Resources Coordinating Team

RRF River Resources Forum **RRT** Regional Response Team **RST** Regional Support Team **RTC** Report to Congress

S. Senate

SAV Submersed Aquatic Vegetation **SDWA** Safe Drinking Water Act

SEMA State Emergency Management Agency SET System Ecological Team
SONS Spill of National Significance

SOW Scope of Work

SRF State Revolving Fund

SWCD Soil and Water Conservation District

T&E Threatened and Endangered TEUs twenty-foot equivalent units

TIGER Transportation Investment Generating Economic Recovery

TLP Traditional License Process
TMDL Total Maximum Daily Load
TNC The Nature Conservancy
TSP Tentatively selected plan
TSS Total Suspended Solids
TVA Tennessee Valley Authority
TWG Technical Work Group

UMESC Upper Midwest Environmental Sciences Center

UMIMRA Upper Mississippi, Illinois, and Missouri Rivers Association

UMR Upper Mississippi River

UMRBA Upper Mississippi River Basin Association
UMRBC Upper Mississippi River Basin Commission
UMRCC Upper Mississippi River Conservation Committee

UMRCP Upper Mississippi River Comprehensive Plan
UMR-IWW Upper Mississippi River-Illinois Waterway

UMRNWFR Upper Mississippi River National Wildlife and Fish Refuge

UMRR Upper Mississippi River Restoration Program [Note: Formerly known as

Environmental Management Program.]

UMRR CC Upper Mississippi River Restoration Program Coordinating Committee

UMRS Upper Mississippi River System

UMWA Upper Mississippi Waterway Association

USACE U.S. Army Corps of Engineers

USCG U.S. Coast Guard

USDA U.S. Department of Agriculture USFWS U.S. Fish and Wildlife Service

USGS U.S. Geological Survey VTC Video Teleconference WCI Waterways Council, Inc.

WES Waterways Experiment Station (replaced by ERDC)

WHAG Wildlife Habitat Appraisal Guide
WHIP Wildlife Habitat Incentives Program

WIIN Water Infrastructure Improvements for the Nation Act

WLMTF Water Level Management Task Force

WQ Water Quality

WQEC Water Quality Executive Committee

WQTF Water Quality Task Force WQS Water Quality Standard

WRDA Water Resources Development Act

WRP Wetlands Reserve Program

WRRDA Water Resources Reform and Development Act

Upper Mississippi River Restoration Program Authorization

Section 1103 of the Water Resources Development Act of 1986 (P.L. 99-662) as amended by

Section 405 of the Water Resources Development Act of 1990 (P.L. 101-640),

Section 107 of the Water Resources Development Act of 1992 (P.L. 102-580),

Section 509 of the Water Resources Development Act of 1999 (P.L. 106-53),

Section 2 of the Water Resources Development Technical Corrections of 1999 (P.L. 106-109),

Section 3177 of the Water Resources Development Act of 2007 (P.L. 110-114), and

Section 307 of the Water Resources Development Act of 2020 (P.L. 116-260).

Additional Cost Sharing Provisions

Section 906(e) of the Water Resources Development Act of 1986 (P.L. 99-662) as amended by Section 221 of the Water Resources Development Act of 1999 (P.L. 106-53).

SEC. 1103. UPPER MISSISSIPPI RIVER PLAN.

- (a)(1) This section may be cited as the "Upper Mississippi River Management Act of 1986".
- (2) To ensure the coordinated development and enhancement of the Upper Mississippi River system, it is hereby declared to be the intent of Congress to recognize that system as a nationally significant ecosystem and a nationally significant commercial navigation system. Congress further recognizes that the system provides a diversity of opportunities and experiences. The system shall be administered and regulated in recognition of its several purposes.
 - (b) For purposes of this section --
- (1) the terms "Upper Mississippi River system" and "system" mean those river reaches having commercial navigation channels on the Mississippi River main stem north of Cairo, Illinois; the Minnesota River, Minnesota; Black River, Wisconsin; Saint Croix River, Minnesota and Wisconsin; Illinois River and Waterway, Illinois; and Kaskaskia River, Illinois;
- (2) the term "Master Plan" means the comprehensive master plan for the management of the Upper Mississippi River system, dated January 1, 1982, prepared by the Upper Mississippi River Basin Commission and submitted to Congress pursuant to Public Law 95-502:
- (3) the term "GREAT I, GREAT II, and GRRM studies" means the studies entitled "GREAT Environmental Action Team--GREAT I--A Study of the Upper Mississippi River", dated September 1980, "GREAT River Environmental Action Team--GREAT II--A Study of the Upper Mississippi River", dated December 1980, and "GREAT River Resource Management Study", dated September 1982; and
- (4) the term "Upper Mississippi River Basin Association" means an association of the States of Illinois, Iowa, Minnesota, Missouri, and Wisconsin, formed for the purposes of cooperative effort and united assistance in the comprehensive planning for the use, protection, growth, and development of the Upper Mississippi River System.
- (c)(1) Congress hereby approves the Master Plan as a guide for future water policy on the Upper Mississippi River system. Such approval shall not constitute authorization of any recommendation contained in the Master Plan.
- (2) Section 101 of Public Law 95-502 is amended by striking out the last two sentences of subsection (b), striking out subsection (i), striking out the final sentence of subsection (j), and redesignating subsection "(j)" as subsection "(i)".
- (d)(1) The consent of the Congress is hereby given to the States of Illinois, Iowa, Minnesota, Missouri, and Wisconsin, or any two or more of such States, to enter into negotiations for agreements, not in conflict with any law of the United States, for cooperative effort and mutual assistance in the comprehensive planning for the use, protection, growth, and development of the Upper Mississippi River system, and to establish such agencies, joint or otherwise, or designate an existing multi-State entity, as they may deem desirable for making effective such

agreements. To the extent required by Article I, section 10 of the Constitution, such agreements shall become final only after ratification by an Act of Congress.

- (2) The Secretary is authorized to enter into cooperative agreements with the Upper Mississippi River Basin Association or any other agency established under paragraph (1) of this subsection to promote and facilitate active State government participation in the river system management, development, and protection.
- (3) For the purpose of ensuring the coordinated planning and implementation of programs authorized in subsections (e) and (h)(2) of this section, the Secretary shall enter into an interagency agreement with the Secretary of the Interior to provide for the direct participation of, and transfer of funds to, the Fish and Wildlife Service and any other agency or bureau of the Department of the Interior for the planning, design, implementation, and evaluation of such programs.
- (4) The Upper Mississippi River Basin Association or any other agency established under paragraph (1) of this subsection is hereby designated by Congress as the caretaker of the master plan. Any changes to the master plan recommended by the Secretary shall be submitted to such association or agency for review. Such association or agency may make such comments with respect to such recommendations and offer other recommended changes to the master plan as such association or agency deems appropriate and shall transmit such comments and other recommended changes to the Secretary. The Secretary shall transmit such recommendations along with the comments and other recommended changes of such association or agency to the Congress for approval within 90 days of the receipt of such comments or recommended changes.
 - (e) Program Authority
 - (1) Authority
 - (A) In general. The Secretary, in consultation with the Secretary of the Interior and the States of Illinois, Iowa, Minnesota, Missouri, and Wisconsin, may undertake, as identified in the master plan
 - (i) a program for the planning, construction, and evaluation of measures for fish and wildlife habitat rehabilitation and enhancement; and
 - (ii) implementation of a long-term resource monitoring, computerized data inventory and analysis, and applied research program, including research on water quality issues affecting the Mississippi River (including elevated nutrient levels) and the development of remediation strategies.
 - (B) Advisory committee. In carrying out subparagraph (A)(i), the Secretary shall establish an independent technical advisory committee to review projects, monitoring plans, and habitat and natural resource needs assessments.
- (2) REPORTS. Not later than December 31, 2004, and not later than December 31 of every sixth year thereafter, the Secretary, in consultation with the Secretary of the Interior and the States of Illinois, Iowa, Minnesota, Missouri, and Wisconsin, shall submit to Congress a report that
 - (A) contains an evaluation of the programs described in paragraph (1);
 - (B) describes the accomplishments of each of the programs;
 - (C) provides updates of a systemic habitat needs assessment; and
 - (D) identifies any needed adjustments in the authorization of the programs.
- (3) For purposes of carrying out paragraph (1)(A)(i) of this subsection, there is authorized to be appropriated to the Secretary \$40,000,000 for fiscal year 1999 and each fiscal year thereafter.
- (4) For purposes of carrying out paragraph (1)(A)(ii) of this subsection, there is authorized to be appropriated to the Secretary \$15,000,000 for fiscal year 1999 and each fiscal year thereafter.
- (5) Authorization of appropriations.—There is authorized to be appropriated to carry out paragraph (1)(B) \$350,000 for each of fiscal years 1999 through 2009.

- (6) Transfer of amounts.—For fiscal year 1999 and each fiscal year thereafter, the Secretary, in consultation with the Secretary of the Interior and the States of Illinois, Iowa, Minnesota, Missouri, and Wisconsin, may transfer not to exceed 20 percent of the amounts appropriated to carry out clause (i) or (ii) of paragraph (1)(A) to the amounts appropriated to carry out the other of those clauses.
- (7)(A) Notwithstanding the provisions of subsection (a)(2) of this section, the costs of each project carried out pursuant to paragraph (1)(A)(i) of this subsection shall be allocated between the Secretary and the appropriate non-Federal sponsor in accordance with the provisions of section 906(e) of this Act; except that the costs of operation and maintenance of projects located on Federal lands or lands owned or operated by a State or local government shall be borne by the Federal, State, or local agency that is responsible for management activities for fish and wildlife on such lands and, in the case of any project requiring non-Federal cost sharing, the non-Federal share of the cost of the project shall be 35 percent.
- (B) Notwithstanding the provisions of subsection (a)(2) of this section, the cost of implementing the activities authorized by paragraph (1)(A)(ii) of this subsection shall be allocated in accordance with the provisions of section 906 of this Act, as if such activity was required to mitigate losses to fish and wildlife.
- (8) None of the funds appropriated pursuant to any authorization contained in this subsection shall be considered to be chargeable to navigation.
- (f) (1) The Secretary, in consultation with any agency established under subsection (d)(1) of this section, is authorized to implement a program of recreational projects for the system substantially in accordance with the recommendations of the GREAT I, GREAT II, and GRRM studies and the master plan reports. In addition, the Secretary, in consultation with any such agency, shall, at Federal expense, conduct an assessment of the economic benefits generated by recreational activities in the system. The cost of each such project shall be allocated between the Secretary and the appropriate non-Federal sponsor in accordance with title I of this Act.
- (2) For purposes of carrying out the program of recreational projects authorized in paragraph (1) of this subsection, there is authorized to be appropriated to the Secretary not to exceed \$500,000 per fiscal year for each of the first 15 fiscal years beginning after the effective date of this section.
- (g) The Secretary shall, in his budget request, identify those measures developed by the Secretary, in consultation with the Secretary of Transportation and any agency established under subsection (d)(1) of this section, to be undertaken to increase the capacity of specific locks throughout the system by employing nonstructural measures and making minor structural improvements.
- (h)(1) The Secretary, in consultation with any agency established under subsection (d)(1) of this section, shall monitor traffic movements on the system for the purpose of verifying lock capacity, updating traffic projections, and refining the economic evaluation so as to verify the need for future capacity expansion of the system.
 - (2) Determination.
 - (A) In general. The Secretary in consultation with the Secretary of the Interior and the States of Illinois, Iowa, Minnesota, Missouri, and Wisconsin, shall determine the need for river rehabilitation and environmental enhancement and protection based on the condition of the environment, project developments, and projected environmental impacts from implementing any proposals resulting from recommendations made under subsection (g) and paragraph (1) of this subsection.
 - (B) Requirements. The Secretary shall
 - (i) complete the ongoing habitat needs assessment conducted under this paragraph not later than September 30, 2000; and
 - (ii) include in each report under subsection (e)(2) the most recent habitat needs assessment conducted under this paragraph.

- (3) There is authorized to be appropriated to the Secretary such sums as may be necessary to carry out this subsection.
- (i) (1) The Secretary shall, as he determines feasible, dispose of dredged material from the system pursuant to the recommendations of the GREAT I, GREAT II, and GRRM studies.
- (2) The Secretary shall establish and request appropriate Federal funding for a program to facilitate productive uses of dredged material. The Secretary shall work with the States which have, within their boundaries, any part of the system to identify potential users of dredged material.
- (j) The Secretary is authorized to provide for the engineering, design, and construction of a second lock at locks and dam 26, Mississippi River, Alton, Illinois and Missouri, at a total cost of \$220,000,000, with a first Federal cost of \$220,000,000. Such second lock shall be constructed at or in the vicinity of the location of the replacement lock authorized by section 102 of Public Law 95-502. Section 102 of this Act shall apply to the project authorized by this subsection.

SEC. 906(e). COST SHARING.

- (e) In those cases when the Secretary, as part of any report to Congress, recommends activities to enhance fish and wildlife resources, the first costs of such enhancement shall be a Federal cost when--
- (1) such enhancement provides benefits that are determined to be national, including benefits to species that are identified by the National Marine Fisheries Service as of national economic importance, species that are subject to treaties or international convention to which the United States is a party, and anadromous fish;
- (2) such enhancement is designed to benefit species that have been listed as threatened or endangered by the Secretary of the Interior under the terms of the Endangered Species Act, as amended (16 U.S.C. 1531, et seq.), or
 - (3) such activities are located on lands managed as a national wildlife refuge.

When benefits of enhancement do not qualify under the preceding sentence, 25 percent of such first costs of enhancement shall be provided by non-Federal interests under a schedule of reimbursement determined by the Secretary. Not more than 80 percent of the non-Federal share of such first costs may be satisfied through in-kind contributions, including facilities, supplies, and services that are necessary to carry out the enhancement project. The non-Federal share of operation, maintenance, and rehabilitation of activities to enhance fish and wildlife resources shall be 25 percent.

EMP OPERATING APPROACH

2006 marks the 20th anniversary of the Environmental Management Program (EMP). During that time, the Program pioneered many new ideas to help deliver efficient and effective natural resource programs to the Upper Mississippi River System (UMRS). These included the creation of an effective partnership of five states, five federal agencies, and numerous NGOs; a network of six field stations monitoring the natural resources of the UMRS; and the administrative structure to encourage river managers to use both new and proven environmental restoration techniques.

EMP has a history of identifying and dealing with both natural resource and administrative challenges. The next several years represent new opportunities and challenges as Congress considers authorization of the Navigation and Environmental Sustainability Program (NESP), possible integration or merger of EMP with NESP, and changing standards for program management and execution.

We will continue to learn from both the history of EMP and experience of other programs. Charting a course for EMP over the next several years is important to the continued success of the Program. EMP will focus on the key elements of partnership, regional administration and coordination, LTRMP, and HREPs.

The fundamental focus of EMP will not change, however the way we deliver our services must change and adapt. This will include:

- further refinements in regional coordination and management,
- refinement of program goals and objectives,
- increased public outreach efforts,
- development and use of tools such as the regional HREP database and HREP Handbook,
- exploring new delivery mechanisms for contracting,
- continued refinement of the interface between LTRMP and the HREP program components, and
- scientific and management application of LTRMP information and data.

The focus of these efforts must benefit the resources of the UMRS through efficient and effective management.