This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): December 15, 2015

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: CEMVR-OD-P-2015-0268, Polk County Conservation

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: Iowa
 County/parish/borough: Polk
 City: Des Moines
 Center coordinates of site (lat/long in degree decimal format): Lat. 41.5446255169636°, Long. -93.5551728982271°
 Universal Transverse Mercator: Zone 15, N4599367, E453695
 Name of nearest waterbody: Easter Lake / Des Moines River
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Des Moines River
 Name of watershed or Hydrologic Unit Code (HUC): 7100008 Lake Red Rock, Iowa

 Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 Office (Desk) Determination. Date: April 7, 2015 through December 15, 2015
 Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 - Waters subject to the ebb and flow of the tide.
 - Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 Explain: Des Moines River is downstream of Easter Lake and is used for recreational navigation.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]
 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters
 - Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: Des Moines River 7300'; Yeader Creek 9900'; Tributary D (West) 1960'; Tributary L (Middle) 2100 linear feet; width (ft) and/or Easter Lake 172 acres; Des Moines River Sand Pit 137.0 acres. Wetlands: 23.93 acres.
 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual
 Elevation of established OHWM (if known):

 2. Non-regulated waters/wetlands (check if applicable): 3
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 - Explain:

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally" (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; only if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

 Identify TNW: Des Moines River.

 Summarize rationale supporting determination: Des Moines River is listed by the Corps of Engineers, Rock Island District, as a Section 10 Water. The river is presently used for recreational navigation, and historically was used for commercial navigation.

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is “adjacent”: Wetlands 1: 0.41 ac; Wetland 2: 0.11 ac; Wetland 3: 4.49 ac; Wetland 25: 0.02 ac; Wetland 26: 0.37 ac; Wetland 27: 0.02 ac; Wetland 28: 0.02 ac; Wetland 29: 0.12 ac; Wetland 30: 0.17 ac; Wetland 31: 0.16 ac; Wetland 32: 0.06 ac Total 5.95 ac; River Sand Pit 137.0 acres. These wetlands and the River Sand Pit (L1UBHx) are in the floodway of the Des Moines River.

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 2400 square miles
 Drainage area: 92 & 280 acres
 Average annual rainfall: 34-36 inches
 Average annual snowfall: inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 [] Tributary flows directly into TNW.
 [X] Tributary flows through 2 tributaries before entering TNW.

 Project waters are 1-2 river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Project waters are Pick List aerial (straight) miles from RPW.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW:\(^5\): Tributaries flow into Easter Lake which flows into Yeader Creek to the Des Moines River. Tributary stream order, if known: 2\(^{nd}\) order.

(b) General Tributary Characteristics (check all that apply):

Tributary is: ☒ Natural
☐ Artificial (man-made). Explain:
☐ Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate):
- Average width: 7-14 feet
- Average depth: 3 feet
- Average side slopes: **Vertical (1:1 or less).**

Primary tributary substrate composition (check all that apply):
- ☒ Silts
- ☐ Sands
- ☐ Concrete
- ☐ Gravel
- ☐ Muck
- ☐ Bedrock
- ☒ Vegetation. Type/\% cover: Woodland
- ☐ Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Tributaries are experiencing streambed and bank erosion.

Presence of run/riffle/pool complexes. Explain:

Tributary geometry: **Meandering**

Tributary gradient (approximate average slope): 1.5 to 2.7 %

(c) Flow:

Tributary provides for: **Seasonal flow**

Estimate average number of flow events in review area/year: **20 (or greater)**

Describe flow regime:

Other information on duration and volume:

Surface flow is: **Discrete and confined.** Characteristics: Well defined channels.

Subsurface flow: **Yes.** Explain findings: Soil mapped as 11B, Colo, Occasionally Flooded, which is a hydric soil. Hydric soil indicates subsurface flows. NWI Classification is PEMC and R4SBC which indicates seasonal flow.

☐ Dye (or other) test performed:

Tributary has (check all that apply):
- ☒ Bed and banks
- ☒ OHWM\(^6\) (check all indicators that apply):
 - ☒ clear, natural line impressed on the bank
 - ☒ changes in the character of soil
 - ☒ shelving
 - ☒ vegetation matted down, bent, or absent
 - ☒ leaf litter disturbed or washed away
 - ☒ sediment deposition
 - ☒ water staining
 - ☒ other (list):
 - the presence of litter and debris
 - destruction of terrestrial vegetation
 - the presence of wrack line
 - sediment sorting
 - scour
 - multiple observed or predicted flow events
 - abrupt change in plant community

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- ☐ High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list):
- ☐ Mean High Water Mark indicated by:
 - survey to available datum;
 - physical markings;
 - vegetation lines/changes in vegetation types.

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

\(^6\) A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\) Ibid.
(iii) **Chemical Characteristics:**

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: .

Identify specific pollutants, if known: .
(iv) Biological Characteristics. Channel supports (check all that apply):
- Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: .
 - Other environmentally-sensitive species. Explain findings: .
- Aquatic/wildlife diversity. Explain findings: Forested upland areas adjacent to the tributaries in the Easter Lake Park provide habitat for amphibious species, migratory waterfowl, and resident wildlife.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
 Properties:
 - Wetland size: acres
 - Wetland type. Explain: .
 Project wetlands cross or serve as state boundaries. Explain: .

(b) General Flow Relationship with Non-TNW:
 Flow is: Pick List. Explain: .
 Surface flow is: Pick List.
 Characteristics: .
 Subsurface flow: Pick List. Explain findings: .
 Dye (or other) test performed: .

(c) Wetland Adjacency Determination with Non-TNW:
 - Directly abutting
 - Not directly abutting
 - Discrete wetland hydrologic connection. Explain: .
 - Separated by berm/barrier. Explain: .

(d) Proximity (Relationship) to TNW:
 Project wetlands are Pick List river miles from TNW.
 Project waters are Pick List aerial (straight) miles from TNW.
 Flow is from: Pick List.
 Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:
 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: .
 Identify specific pollutants, if known: .

(iii) Biological Characteristics. Wetland supports (check all that apply):
 - Riparian buffer. Characteristics (type, average width): .
 - Vegetation type/percent cover. Explain: .
 Habitat for:
 - Federally Listed species. Explain findings: .
 - Fish/spawn areas. Explain findings: .
 - Other environmentally-sensitive species. Explain findings: .
 - Aquatic/wildlife diversity. Explain findings: .

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: Pick List.
 Approximately () acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
</table>

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW.

Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: Des Moines River: 9900 linear feet width (ft), or acres.
 - Wetlands adjacent to TNWs: Wetland 1: 0.41 ac; Wetland 2: 0.11 ac; Wetland 3: 4.49 acres; Wetland 25: 0.02 ac; Wetland 26: 0.37 ac; Wetland 27: 0.02 ac; Wetland 28: 0.02 ac; Wetland 29: 0.12 ac; Wetland 30: 0.17 ac; Wetland 31: 0.16 ac; Wetland 32: 0.06 ac; Total Wetlands: 5.95 ac; River Sand Pit (LiUBH1) 137.0 acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Yeader Creek has an NWI Classification as Riverine, Lower Perennial.
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: Tributaries D (West) and L (Middle) have NWI Classification of PEMC and R4SBC which indicates seasonal flows.
Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: Yeader Creek 9900; Tributary D (West) 1960'; Tributary L (Middle) 2100 linear feet width

- Other non-wetland waters: acres.

3. Non-RPWs\(^3\) that flow directly or indirectly into TNWs.

- Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Wetland 4, 0.09 ac abuts Yeader Creek. Wetlands abut Easter Lake (impoundment of Yeader Creek: Wetland 5: 0.14 ac; Wetland 5.1: 0.03 ac; Wetland 6: 0.03 ac; Wetland 6.1: 0.12; Wetland 7: 0.10 ac; Wetland 8: 2.65 ac; Wetland 9: 4.61 ac; Wetland 10: 0.22 ac; Wetland 11: 0.89 ac; Wetland 12: 0.41 ac; Wetland 13: 0.07 ac; Wetland 14: 0.14 ac; Wetland 15: 0.08 ac; Wetland 16: 1.01 ac; Wetland 17: 1.12 ac; Wetland 18: 0.13 ac; Wetland 19: 0.09 ac; Wetland 20 1.10 ac; Wetland 21: 0.22 ac; Wetland 22: 1.32 ac; Wetland 23: 2.36 ac; Wetland 24: 0.11 ac.

- Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: .

Provide acreage estimates for jurisdictional wetlands in the review area: 17.04 acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

- Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

- Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.\(^9\)

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

- Demonstrate that impoundment was created from “waters of the U.S.” or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):\(^{98}\)

\(^3\)See Footnote # 3.

\(^9\)To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain: .
- Other factors. Explain: .

Identify water body and summarize rationale supporting determination: .

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: linear feet width (ft).
- Other non-wetland waters: acres.
- Identify type(s) of waters: .
- Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):
- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: .
- Other: (explain, if not covered above): .

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): linear feet width (ft).
- Lakes/ponds: acres.
- Other non-wetland waters: acres. List type of aquatic resource: .
- Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: .
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
- Office concurs with data sheets/delineation report.
- Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: .
- Corps navigable waters’ study: .
- USGS NH D data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name: IA-DES MOINES SE.
- USDA Natural Resources Conservation Service Soil Survey. Citation: Polk County Soil Survey - Web Soil Survey.
- National wetlands inventory map(s). Cite name: IA-DES MOINES SE.
- State/Local wetland inventory map(s): .
- FEMA/FIRM maps: .
- 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): ORM2-GIS, Google Earth, Arcmap.

Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
B. ADDITIONAL COMMENTS TO SUPPORT JD: Potential Wetlands PW1 through PW7 were identified at the former gravel pit north of the Des Moines River on January 21, 2015. Field verification could not be completed due to winter conditions. The Potential Wetlands, shown on Wetland Delineation Figures 5-1 through 5-4 dated February 18, 2015, are not included as part of this Approved Jurisdictional Determination.

Field verification of wetlands in these areas was completed on June 12, 2015 and August 6, 2015, and are shown on Wetland Delineation Addendum Figures 5-1 through 5-5. Wetlands 25 through 32 were delineated and are included as part of this Approved Jurisdictional Determination.
USGS TOPOGRAPHY MAP
EASTER LAKE RESTORATION
POLK COUNTY, IOWA

Legend

Project Boundary

Source: IOWA DNR NRGIS LIBRARY
Document Path: J:\2014_Projects\114.0546\GIS\EasterLake_Delineation_Ex2_Topo.mxd
Date: 2/17/2015
WETLAND DELINEATION
EASTER LAKE RESTORATION
POLK COUNTY, IOWA

Legend
- Data Points
- Jurisdictional Waters
- Potential Wetlands
- Delineated Wetlands
- Project Boundary
- Proposed Dredge Pipe
WETLAND DELINEATION
EASTER LAKE RESTORATION
POLK COUNTY, IOWA
Figure 5-5

Legend
- Data Points
- Jurisdictional Waters
- Potential Wetlands
- Delineated Wetlands
- Project Boundary
- Proposed Dredge Pipe

WETLAND DELINEATION
EASTER LAKE RESTORATION
POLK COUNTY, IOWA

Source: IOWA DNR NRGIS LIBRARY

Date: 2/18/2015
Figure 5-6

Source: IOWA DNR NRGIS LIBRARY

Legend:
- Data Points
- Jurisdictional Waters
- Potential Wetlands
- Delineated Wetlands
- Project Boundary
- Proposed Dredge Pipe

WETLAND DELINEATION
EASTER LAKE RESTORATION
POLK COUNTY, IOWA

Date: 2/18/2015

Source: Snyder & Associates, Engineers and Planners

Document Path: J:\2014_Projects\114.0546\GIS\EasterLake_Delineation_Ex5_Delineation.mxd
WETLAND DELINEATION
EASTER LAKE RESTORATION
POLK COUNTY, IOWA
Figure 5-9

Legend

Data Points
Jurisdictional Waters
Potential Wetlands
Delineated Wetlands
Project Boundary

EASTER LAKE RESTORATION
POLK COUNTY, IOWA
Wetland 26
0.37 ac

Wetland 25
0.02 ac

Wetland 27
0.02 ac

Wetland 28
0.02 ac

Wetland 29
0.02 ac

Wetland 30
0.17 ac

Wetland 31
0.16 ac

Wetland 32
0.06 ac

Legend

Data Points
Jurisdictional Waters
Delineated Wetlands 2014
Delineated Wetlands 2015
Proposed Dredge Pipe
Project Boundary

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, GeoEye, ASC, IGN, IGP, swisstopo, and the GIS User Community

EASTER LAKE RESTORATION
POLK COUNTY, IOWA

Source: IOWA DNR NRGIS LIBRARY

Document Path: J:\2014_Projects\114.0546\GIS\EasterLake_Delineation_Ex5_DelineationREVISED.mxd

Date: 8/19/2015
WETLAND DELINEATION ADDENDUM

EASTER LAKE RESTORATION

POLK COUNTY, IOWA