APPROVED JURISDICTIONAL DETERMINATION FORM **U.S. Army Corps of Engineers**

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

- REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): September 14, 2015 A.
- DISTRICT OFFICE, FILE NAME, AND NUMBER: MVR, 2015-465, Forest Economic Development Corp. В.

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State:Iowa County/parish/borough: Hancock City: Forest City Center coordinates of site (lat/long in degree decimal format): Lat. 43.242589° N, Long. -93.643118° W. Universal Transverse Mercator: 15T 4784945.64mN, 447786.56mE

Name of nearest waterbody: Unnamed

Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Mississippi River Name of watershed or Hydrologic Unit Code (HUC): 07080203

 \boxtimes Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.

Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date: 6/30/2015

Field Determination. Date(s): August 13, 2015

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide.

Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.

- a. Indicate presence of waters of U.S. in review area (check all that apply): ¹
 - TNWs, including territorial seas
 - Wetlands adjacent to TNWs
 - Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
 - Non-RPWs that flow directly or indirectly into TNWs
 - Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 - \boxtimes Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 - Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 - Impoundments of jurisdictional waters

Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: 650 linear feet: 12' width (ft) and/or acres.

Wetlands: 11.05 acres.

c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known):

2. Non-regulated waters/wetlands (check if applicable):³

Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.

² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).

Supporting documentation is presented in Section III.F.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:

Summarize rationale supporting determination:

2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions: Watershed size: 441,604 acres Drainage area: 352.43 acres Average annual rainfall: 34.72 inches Average annual snowfall: 31.8 inches

(ii) Physical Characteristics:

(a) <u>Relationship with TNW:</u>

 ☐ Tributary flows directly into TNW.
 ☑ Tributary flows through 4 tributaries before entering TNW.

Project waters are 30 (or more) river miles from TNW.
Project waters are Project waters are 30 (or more) aerial (straight) miles from TNW.
Project waters are 1 (or less) aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:

Identify flow route to TNW⁵: Unnamed to Winnebago River to Shell Rock River to Cedar River to Mississippi River. Tributary stream order, if known: 1.

⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

(b) <u>General Tributary Characteristics (check all that apply):</u>

Natural

Artificial (man-made). Explain: Aerial photo review shows that the tributary was constructed in the 1970s. The drainage feature was extended from a feature that existed in 1930 aerial photos. Prior to the feature appearing the area was used for agricultural purposes. It appears that subsurface drainage was present in the project area prior to the construction of the project waters. The drainage feature was likely extended in the 1970s to increase agricultural drainage..

Manipulated (man-altered). Explain:

Tributary properties with respect to top of bank (estimate): Average width: 12 feet

Twenage width. 12 leet	
Average depth: 2 feet	
Average side slopes: 2:1	•

Tributary is:

Primary tributary substrate composition (check all that apply): Silts

Silts	Sands	Concrete
Cobbles	🖾 Gravel	Muck
Bedrock	Vegetation. Type/% cover: 1	ess than 5% with Reed Canary Grass and Smartweed

Species.

Other. Explain:

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Tributary appears stable at project

location.

Presence of run/riffle/pool complexes. Explain: not within project area. Tributary geometry: Relatively straight Tributary gradient (approximate average slope): <1 %

(c) Flow:

Tributary provides for: Seasonal flow

Estimate average number of flow events in review area/year: 20 (or greater)

Describe flow regime: Flows at least seasonally. Likely has perennial flow. All aerial photos show water in stream. Considerable flow was present at time of site visit in July. A distinct bed and banks as well as a OHWM indicate considerable flow. Three 36" culverts carry the flow offsite, which indicate significant flows through the stream..

Other information on duration and volume:

Surface flow is: Confined. Characteristics:	
Subsurface flow: Unknown . Explain findings:	
Tributary has (check all that apply): Bed and banks OHWM ⁶ (check all indicators that apply): clear, natural line impressed on the bank changes in the character of soil shelving vegetation matted down, bent, or absent leaf litter disturbed or washed away sediment deposition water staining other (list): Discontinuous OHWM. ⁷ Explain:	 the presence of litter and debris destruction of terrestrial vegetation the presence of wrack line sediment sorting scour multiple observed or predicted flow events abrupt change in plant community
If factors other than the OHWM were used to determin High Tide Line indicated by: oil or scum line along shore objects fine shell or debris deposits (foreshore) physical markings/characteristics tidal gauges other (list):	ne lateral extent of CWA jurisdiction (check all that apply): Mean High Water Mark indicated by: survey to available datum; physical markings; vegetation lines/changes in vegetation types.

⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid.

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
 Explain: Water was clear at time of visit. Water treatement facility upstream may contribute to flow.
 Identify specific pollutants, if known:

(iv) Biological Characteristics. Channel supports (check all that apply):

Riparian corridor. Characteristics (type, average width): Cooridor approximately 30 feet wide. Agricultural field present as well as re-population of natural vegetation.

Wetland fringe. Characteristics:

Habitat for:

Federally Listed species. Explain findings:

Fish/spawn areas. Explain findings:

Other environmentally-sensitive species. Explain findings:

Aquatic/wildlife diversity. Explain findings: Some amphibian use is likely due to proximity to tributary. May serve as habitat for some small mammal species.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

- (a) <u>General Wetland Characteristics:</u>
 - Properties:

Wetland size:11.05 acres

Wetland type. Explain: Emergent, Wet Meadow. Wetland quality. Explain: Weltand areas are often farmed, during dry years.. Project wetlands cross or serve as state boundaries. Explain:

(b) General Flow Relationship with Non-TNW:

Flow is: **Ephemeral flow**. Explain: Flows from the wetland to the RPW occur during seasonal high precipitation/flow events. This has been documented through aerial photo and lidar images. The onsite photos also show drainage lines and flow paths from the wetland to the RPW.

Surface flow is: Overland sheetflow

Characteristics: Flow is somewhat confined to low swale type features in the spoil berm that is adjacen to the RPW.

Subsurface flow: **Pick List**. Explain findings:

Dye (or other) test performed:

- (c) Wetland Adjacency Determination with Non-TNW:
 - Directly abutting
 - Not directly abutting

Discrete wetland hydrologic connection. Explain: Water will flow into tributary directly from wetland during high precipitation events or during seasonal high flows. LIDAR mapping and certain aerial photography shows the surface hydrological connection.

Ecological connection. Explain:

 $\overline{\boxtimes}$ Separated by berm/barrier. Explain: Wetland is separated from tributary by a berm that was likely a result in spoils from the construction and agricultural maintenance of the tributary .

(d) Proximity (Relationship) to TNW

Project wetlands are **30 (or more)** river miles from TNW. Project waters are **30 (or more)** aerial (straight) miles from TNW. Flow is from: **Wetland to navigable waters.** Estimate approximate location of wetland as within the **500-year or greater** floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: No surface water was present in wetlands during site visit. General watershed characteristics are defined by impairments associated with agricultural activity. These include increased nitrogen and phosphorus levels in surface/ground waters and wetlands. Erosion and sediment control are also impairments of the watershed.

Identify specific pollutants, if known:

(iii) Biological Characteristics. Wetland supports (check all that apply):

Riparian buffer. Characteristics (type, average width):

Vegetation type/percent cover. Explain: Vegetation is dominated by planted Zea Mays (Corn). Traces of natural vegetation also exist onsite. If the wetland areas were left without human manipulation, natural vegetative characteristics would return. Also during years when planting is not feasible due to excessive water, hydrophytic vegetation would likely become established.

Habitat for:

Federally Listed species. Explain findings:

Fish/spawn areas. Explain findings:

Other environmentally-sensitive species. Explain findings:

Aquatic/wildlife diversity. Explain findings:Has limited wildlife function though it does provide surface water habitat during seasonal periods of high precipitation/snow melt.

3.

Characteristics of all wetlands adjacent to the tributary (if any) All wetland(s) being considered in the cumulative analysis: 9 Approximately (79.88) acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:

<u>Directly abuts? (Y/N)</u>	<u>Size (in acres)</u>	Directly abuts? (Y/N)	<u>Size (in acres)</u>
1. Y	27.5	2. Y	11.12
3. N	11.04	4. N	12.44
5. N 7. N 9. N	1.03 10.8 3.5	6. N 8. N	2.2 0.25

Summarize overall biological, chemical and physical functions being performed: The wetlands identified above contribute several functions and values to the watershed and downstream TNW (Mississippi River). All the wetlands adjacent to and abutting the relevant reach contribute to flood water attenuation, a considerable value considering downstream flooding issues on the Cedar and Mississippi Rivers. Wetlands 1 and 2 are NRCS projects that offer significant functions to wildlife habitat and water quality. These wetlands have fully established emergent plant communities that filter both nutrients (nitrogen and phosphorus) and sediments from the surrounding agricultural fields. The remaining wetlands also contribute water quality benefits and limited habitat benefits. All wetlands also contribute organic carbon to downstream ecosystems in both dissolved and particulate forms..

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

- 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
- 2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
- 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The tributary in the project area is a man made feature that flows at least seasonally. Considerable flow was witnessed during the site visit in July and all aerial photographs reviewed showed water within the feature. Three 36" culverts within the RPW leave the site carrying flows from the project tributary. This tributary then flows through the Winnebago River to the Shell Rock River to the Cedar River to the Mississippi River. Although the TNW is located a considerable amount of distance from the subject water, flow is considerable and consistent through these tributaries and there is a significant capacity to transport nutrients and pollutants to the TNW. Wetlands in the subject property and those adjacent to the relevant reach of the tributary are approximated at 79.88 acres. These wetlands have significant storage capacity which slows water from entering downstream tributaries. This function is significant as the Cedar River and the Mississippi River have experienced considerable flooding events. All wetlands adjacent to and abutting the relevant reach contributes significantly to nutrient and sediment reduction to the

TNW. Sediment and nutrient load in the drainage area are high due to heavily disturbed soils and high nutrients that are a result of extensive agricultural practices. The watershed, and Iowa as a whole, has significant nutrient and sediment impairments, documented by the NRCS. These wetlands absorb and hold these nutrients and sediments from transfer to the downstream TNW. This is also significant due to the Winnebago River's 303(d) "Organic Enrichment Impairment.". The wetlands also have the ability to transfer organic carbon to be used by downstream ecosystems. These organic carbons are used by downstream organisms as a source of food which increases the overall food chain quality in the Mississippi River. The discussion above documents the wetlands significant beneficial effect on the chemical, physical and biological integrity of the downstream TNW.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area: linear feet TNWs: width (ft), Or, acres. Wetlands adjacent to TNWs: acres.

2. RPWs that flow directly or indirectly into TNWs.

- Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
- Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: The waterway identified in the project area has at least seasonal flow due to its significant drainage area, the reliable presence of surface water on aerial photography and the physical indicators of flow identified above. Substantial flow was also present during summer site visit. Three 36" culverts are present under a road boarding the project area which also demonstate significant capacity of the tributary. The documentation above adequately identifies the significance of the flow from the subject tributary to the TNW.

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: **650** linear feet **12**width (ft).
- - Identify type(s) of waters:

Non-RPWs⁸ that flow directly or indirectly into TNWs. 3.

Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

acres.

.

Tributary waters: linear feet width (ft).

Other non-wetland waters: Identify type(s) of waters:

Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. 4.

- Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
 - Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area: acres.

- Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. 5.
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent \boxtimes and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: 11.05 acres.

⁸See Footnote # 3.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.

7. Impoundments of jurisdictional waters.⁹

- As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
- Demonstrate that impoundment was created from "waters of the U.S.," or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):¹⁰

- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain:
- Other factors. Explain:

Identify water body and summarize rationale supporting determination:

Provide estimates for jurisdictional waters in the review area (check all that apply):

Tributary waters: linear feet width (ft).

Other non-wetland waters: acres.

Identify type(s) of waters:

Wetlands: acres.

F. <u>NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):</u>

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
 - Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based <u>solely</u> on the "Migratory Bird Rule" (MBR).

H

Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:

linear feet

Other: (explain, if not covered above):

Provide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

width (ft).

Non-wetland waters (i.e., rivers, streams): Lakes/ponds: 0.40 acres.

Lakes/polids: 0.40 acres.

Other non-wetland waters: acres. List type of aquatic resource:

Wetlands: 0.45 acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
 Lakes/ponds: acres.
 Other non-wetland waters: acres. List type of aquatic resource:

Wetlands: acres.

SECTION IV: DATA SOURCES.

⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA *Memorandum Regarding CWA Act Jurisdiction Following Rapanos*.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below): \boxtimes Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant:Wetland Delineation. Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Data sheets prepared by the Corps: Corps navigable waters' study: U.S. Geological Survey Hydrologic Atlas: USGS NHD data. USGS 8 and 12 digit HUC maps. \boxtimes U.S. Geological Survey map(s). Cite scale & quad name: USDA Natural Resources Conservation Service Soil Survey. Citation: Web Soil Survey. \boxtimes National wetlands inventory map(s). Cite name:USFWS NWI and Historical Wetlands Map. State/Local wetland inventory map(s): FEMA/FIRM maps: 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929) Photographs: Aerial (Name & Date):Attached. or ⊠ Other (Name & Date):Attached. $\overline{\boxtimes}$ Previous determination(s). File no. and date of response letter: Applicable/supporting case law: Applicable/supporting scientific literature: $\overline{\boxtimes}$ Other information (please specify):Google earth Imagery, NRCS Rapid Watershed Assessment (Winnebago).

B. ADDITIONAL COMMENTS TO SUPPORT JD: